General Information of Disease (ID: DIS3IW5F)

Disease Name Lynch syndrome
Synonyms
hereditary nonpolyposis colorectal cancer; HNPCC - hereditary nonpolyposis colon cancer; hereditary nonpolyposis colorectal neoplasm; hereditary defective mismatch repair syndrome; Hereditary colorectal endometrial cancer syndrome; Lynch syndrome; familial non-polyposis colon cancer (hMSH2, hMLH1, hPMS1, hPMS2); Hereditary non-polyposis colon cancer (hMSH2, hMLH1, hPMS1, hPMS2); hereditary non-polyposis colon cancer type 1; Hereditary nonpolyposis colon cancer (hMSH2, hMLH1, hPMS1, hPMS2)
Definition
An autosomal dominant hereditary neoplastic syndrome characterized by the development of colorectal carcinoma and a high risk of developing endometrial carcinoma, gastric carcinoma, ovarian carcinoma, renal pelvis carcinoma, and small intestinal carcinoma. Patients often develop colorectal carcinomas at an early age (mean, 45 years). In the majority of the cases the lesions arise from the proximal colon. At the molecular level, high-frequency microsatellite instability is present.|Sometimes Lynch syndrome is also referred to as hereditary non-polyposis colorectal cancer (HNPCC), but the two conditions are subtly different. Lynch syndrome is classified by a mutation in mismatch repair genes. It is diagnosed by specific criteria known as the Amsterdam criteria.
Disease Hierarchy
DISPA49R: Hereditary nonpolyposis colon cancer
DIS3HIWD: Autosomal dominant disease
DIS3IW5F: Lynch syndrome
Disease Identifiers
MONDO ID
MONDO_0005835
MESH ID
D003123
UMLS CUI
C4552100
MedGen ID
1633554
Orphanet ID
144
SNOMED CT ID
716318002

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 16 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
PMS1 TTX1ISF Refuted Autosomal dominant [1]
FAP TTGPQ0F Limited Genetic Variation [2]
MUTYH TTNB0ZK Limited Biomarker [3]
ANXA10 TT0NL6U Strong Altered Expression [4]
BRIP1 TTZV7LJ Strong Genetic Variation [5]
CD44 TTWFBT7 Strong Biomarker [6]
EPCAM TTZ8WH4 Strong Genetic Variation [7]
GJA8 TTJ7ATH Strong Biomarker [8]
MAT2A TTSMPXQ Strong Biomarker [9]
PMS1 TTX1ISF Strong Genetic Variation [10]
RNASEL TT7V0K4 Strong Genetic Variation [11]
RNF43 TTD91BL Strong Genetic Variation [12]
TGFBR2 TTZE3P7 Strong Biomarker [13]
EPCAM TTZ8WH4 Definitive Autosomal dominant [1]
MLH1 TTISG27 Definitive Autosomal dominant [1]
MSH2 TTCAWRT Definitive Autosomal dominant [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 DTT(s)
This Disease Is Related to 28 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
EXO1 OTI87RS5 Refuted Autosomal dominant [1]
PMS1 OTOGFMI6 Refuted Autosomal dominant [1]
MSH3 OTD3YPVL Limited Autosomal dominant [1]
POLD1 OTWO4UCJ Limited Genetic Variation [14]
POLE OTFM3MMU Limited Genetic Variation [15]
RAD51C OTUD6SY5 Limited Genetic Variation [5]
RPS20 OTI8052R Limited Autosomal dominant [1]
SEMA4A OT8901H3 Disputed Autosomal dominant [1]
FAN1 OT1LM1HZ Supportive Autosomal dominant [16]
AIP OTDJ3OSV Strong Genetic Variation [17]
APC OTKV0TIK Strong Genetic Variation [18]
ATAD1 OTJ02XFL Strong Genetic Variation [19]
EMB OT67E3Q1 Strong Biomarker [20]
HEPACAM OT1MJ51D Strong Biomarker [21]
ITGA9 OTHN1IKA Strong Genetic Variation [22]
KAT2A OTN0W2SW Strong Biomarker [23]
LRRFIP2 OTU8GUMV Strong Genetic Variation [24]
MAX OTKZ0YKM Strong Biomarker [23]
NHS OTKE8QAT Strong Biomarker [25]
NPTN OTAQKSAU Strong Biomarker [26]
PALB2 OT6DNDBG Strong Genetic Variation [27]
PTPRG OT9N2WOF Strong Posttranslational Modification [28]
SEC63 OT1ICPMK Strong Biomarker [29]
EPCAM OTHBZK5X Definitive Autosomal dominant [1]
MLH1 OTG5XDD8 Definitive Autosomal dominant [1]
MSH2 OT10H1AB Definitive Autosomal dominant [1]
MSH6 OT46FP09 Definitive Autosomal dominant [1]
PMS2 OTNLWTMI Definitive Autosomal dominant [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 DOT(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Identification of Lynch syndrome risk variants in the Romanian population.J Cell Mol Med. 2018 Dec;22(12):6068-6076. doi: 10.1111/jcmm.13881. Epub 2018 Oct 16.
3 Multi-gene panel testing confirms phenotypic variability in MUTYH-Associated Polyposis.Fam Cancer. 2019 Apr;18(2):203-209. doi: 10.1007/s10689-018-00116-2.
4 Immunohistochemistry for annexin A10 can distinguish sporadic from Lynch syndrome-associated microsatellite-unstable colorectal carcinoma.Am J Surg Pathol. 2014 Apr;38(4):518-25. doi: 10.1097/PAS.0000000000000148.
5 Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care.Breast Cancer Res Treat. 2016 Dec;160(3):393-410. doi: 10.1007/s10549-016-4003-9. Epub 2016 Oct 12.
6 Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets.Theranostics. 2017 Jan 6;7(2):482-492. doi: 10.7150/thno.16816. eCollection 2017.
7 Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype.Mol Genet Genomic Med. 2019 May;7(5):e587. doi: 10.1002/mgg3.587. Epub 2019 Mar 27.
8 A new strategy to screen MMR genes in Lynch Syndrome: HA-CAE, MLPA and RT-PCR.Eur J Cancer. 2009 May;45(8):1485-93. doi: 10.1016/j.ejca.2009.01.030. Epub 2009 Feb 26.
9 Universal Point of Care Testing for Lynch Syndrome in Patients with Upper Tract Urothelial Carcinoma.J Urol. 2018 Jan;199(1):60-65. doi: 10.1016/j.juro.2017.08.002. Epub 2017 Aug 7.
10 Primary multiple tumor with affection of the thyroid gland, uterus, urinary bladder, mammary gland and other organs.Pathol Res Pract. 2017 May;213(5):574-579. doi: 10.1016/j.prp.2017.01.003. Epub 2017 Jan 19.
11 The additive effect of p53 Arg72Pro and RNASEL Arg462Gln genotypes on age of disease onset in Lynch syndrome patients with pathogenic germline mutations in MSH2 or MLH1.Cancer Lett. 2007 Jul 8;252(1):55-64. doi: 10.1016/j.canlet.2006.12.006. Epub 2007 Jan 16.
12 RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers.Fam Cancer. 2018 Jan;17(1):63-69. doi: 10.1007/s10689-017-0003-0.
13 EGFR, SMAD7, and TGFBR2 Polymorphisms Are Associated with Colorectal Cancer in Patients with Lynch Syndrome.Anticancer Res. 2018 Oct;38(10):5983-5990. doi: 10.21873/anticanres.12946.
14 Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.Mol Carcinog. 2017 Jul;56(7):1753-1764. doi: 10.1002/mc.22632. Epub 2017 Mar 30.
15 Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1.Genet Med. 2018 Aug;20(8):890-895. doi: 10.1038/gim.2017.185. Epub 2017 Nov 9.
16 Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. Gastroenterology. 2015 Sep;149(3):563-6. doi: 10.1053/j.gastro.2015.05.056. Epub 2015 Jun 5.
17 Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations.Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4101-5. doi: 10.1073/pnas.0700004104. Epub 2007 Feb 28.
18 Excluding Lynch syndrome in a female patient with metachronous DNA mismatch repair deficient colon- and ovarian cancer.Fam Cancer. 2018 Jul;17(3):415-420. doi: 10.1007/s10689-017-0055-1.
19 Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome.Cancer Epidemiol Biomarkers Prev. 2008 Sep;17(9):2393-401. doi: 10.1158/1055-9965.EPI-08-0326.
20 Immunohistochemistry for mismatch repair protein deficiency in endometrioid endometrial carcinoma yields equivalent results when performed on endometrial biopsy/curettage or hysterectomy specimens.Gynecol Oncol. 2018 Jun;149(3):570-574. doi: 10.1016/j.ygyno.2018.04.005. Epub 2018 Apr 13.
21 Advances in the study of Lynch syndrome in China.World J Gastroenterol. 2015 Jun 14;21(22):6861-71. doi: 10.3748/wjg.v21.i22.6861.
22 An interstitial deletion at 3p21.3 results in the genetic fusion of MLH1 and ITGA9 in a Lynch syndrome family.Clin Cancer Res. 2009 Feb 1;15(3):762-9. doi: 10.1158/1078-0432.CCR-08-1908.
23 Mutation and association analyses of the candidate genes ESR1, ESR2, MAX, PCNA, and KAT2A in patients with unexplained MSH2-deficient tumors.Fam Cancer. 2012 Mar;11(1):19-26. doi: 10.1007/s10689-011-9489-z.
24 A novel exonic rearrangement affecting MLH1 and the contiguous LRRFIP2 is a founder mutation in Portuguese Lynch syndrome families.Genet Med. 2011 Oct;13(10):895-902. doi: 10.1097/GIM.0b013e31821dd525.
25 Cost-effectiveness analysis of reflex testing for Lynch syndrome in women with endometrial cancer in the UK setting.PLoS One. 2019 Aug 30;14(8):e0221419. doi: 10.1371/journal.pone.0221419. eCollection 2019.
26 Improving the uptake of predictive testing and colorectal screening in Lynch syndrome: a regional primary care survey.Clin Genet. 2015 Jun;87(6):517-24. doi: 10.1111/cge.12559. Epub 2015 Feb 4.
27 Metastatic Prostate Cancer: Effects of Genetic Testing on Care.Clin J Oncol Nurs. 2019 Feb 1;23(1):32-35. doi: 10.1188/19.CJON.32-35.
28 Tumour-specific methylation of PTPRG intron 1 locus in sporadic and Lynch syndrome colorectal cancer.Eur J Hum Genet. 2011 Mar;19(3):307-12. doi: 10.1038/ejhg.2010.187. Epub 2010 Dec 8.
29 Hepatocellular carcinoma as extracolonic manifestation of Lynch syndrome indicates SEC63 as potential target gene in hepatocarcinogenesis.Scand J Gastroenterol. 2013 Mar;48(3):344-51. doi: 10.3109/00365521.2012.752030.