General Information of Drug Off-Target (DOT) (ID: OT2CEYTT)

DOT Name Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA)
Synonyms
SHP substrate 1; SHPS-1; Brain Ig-like molecule with tyrosine-based activation motifs; Bit; CD172 antigen-like family member A; Inhibitory receptor SHPS-1; Macrophage fusion receptor; MyD-1 antigen; Signal-regulatory protein alpha-1; Sirp-alpha-1; Signal-regulatory protein alpha-2; Sirp-alpha-2; Signal-regulatory protein alpha-3; Sirp-alpha-3; p84; CD antigen CD172a
Gene Name SIRPA
UniProt ID
SHPS1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2JJS; 2JJT; 2UV3; 2WNG; 4CMM; 6BIT; 6NMR; 6NMS; 6NMT; 6NMU; 6NMV; 7KPG; 7ST5; 7YGG
Pfam ID
PF07654 ; PF07686
Sequence
MEPAGPAPGRLGPLLCLLLAASCAWSGVAGEEELQVIQPDKSVLVAAGETATLRCTATSL
IPVGPIQWFRGAGPGRELIYNQKEGHFPRVTTVSDLTKRNNMDFSIRIGNITPADAGTYY
CVKFRKGSPDDVEFKSGAGTELSVRAKPSAPVVSGPAARATPQHTVSFTCESHGFSPRDI
TLKWFKNGNELSDFQTNVDPVGESVSYSIHSTAKVVLTREDVHSQVICEVAHVTLQGDPL
RGTANLSETIRVPPTLEVTQQPVRAENQVNVTCQVRKFYPQRLQLTWLENGNVSRTETAS
TVTENKDGTYNWMSWLLVNVSAHRDDVKLTCQVEHDGQPAVSKSHDLKVSAHPKEQGSNT
AAENTGSNERNIYIVVGVVCTLLVALLMAALYLVRIRQKKAQGSTSSTRLHEPEKNAREI
TQDTNDITYADLNLPKGKKPAPQAAEPNNHTEYASIQTSPQPASEDTLTYADLDMVHLNR
TPKQPAPKPEPSFSEYASVQVPRK
Function
Immunoglobulin-like cell surface receptor for CD47. Acts as docking protein and induces translocation of PTPN6, PTPN11 and other binding partners from the cytosol to the plasma membrane. Supports adhesion of cerebellar neurons, neurite outgrowth and glial cell attachment. May play a key role in intracellular signaling during synaptogenesis and in synaptic function. Involved in the negative regulation of receptor tyrosine kinase-coupled cellular responses induced by cell adhesion, growth factors or insulin. Mediates negative regulation of phagocytosis, mast cell activation and dendritic cell activation. CD47 binding prevents maturation of immature dendritic cells and inhibits cytokine production by mature dendritic cells. Plays a role in antiviral immunity and limits new world arenavirus infection by decreasing virus internalization. Receptor for THBS1. Interaction with THBS1 stimulates phosphorylation of SIRPA. In response to THBS1, involved in ROS signaling in non-phagocytic cells, stimulating NADPH oxidase-derived ROS production.
Tissue Specificity
Ubiquitous. Highly expressed in brain. Detected on myeloid cells, but not T-cells. Detected at lower levels in heart, placenta, lung, testis, ovary, colon, liver, small intestine, prostate, spleen, kidney, skeletal muscle and pancreas.
KEGG Pathway
Efferocytosis (hsa04148 )
Osteoclast differentiation (hsa04380 )
Reactome Pathway
Signal regulatory protein family interactions (R-HSA-391160 )
Neutrophil degranulation (R-HSA-6798695 )
Cell surface interactions at the vascular wall (R-HSA-202733 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [13]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [4]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [6]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [7]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [8]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [9]
Selenium DM25CGV Approved Selenium increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [10]
Menadione DMSJDTY Approved Menadione affects the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [11]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [14]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
9 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
12 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.