General Information of Drug Off-Target (DOT) (ID: OTBT8KW9)

DOT Name NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2)
Synonyms EC 7.1.1.2; Complex I-49kD; CI-49kD; NADH-ubiquinone oxidoreductase 49 kDa subunit
Gene Name NDUFS2
Related Disease
Leigh syndrome ( )
Mitochondrial complex I deficiency, nuclear type 1 ( )
Mitochondrial complex 1 deficiency, nuclear type 6 ( )
Leber hereditary optic neuropathy ( )
Leigh syndrome with cardiomyopathy ( )
Mitochondrial complex I deficiency ( )
Obsolete Leigh syndrome with leukodystrophy ( )
UniProt ID
NDUS2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5XTB; 5XTC; 5XTD; 5XTH; 5XTI
EC Number
7.1.1.2
Pfam ID
PF00346
Sequence
MAALRALCGFRGVAAQVLRPGAGVRLPIQPSRGVRQWQPDVEWAQQFGGAVMYPSKETAH
WKPPPWNDVDPPKDTIVKNITLNFGPQHPAAHGVLRLVMELSGEMVRKCDPHIGLLHRGT
EKLIEYKTYLQALPYFDRLDYVSMMCNEQAYSLAVEKLLNIRPPPRAQWIRVLFGEITRL
LNHIMAVTTHALDLGAMTPFFWLFEEREKMFEFYERVSGARMHAAYIRPGGVHQDLPLGL
MDDIYQFSKNFSLRLDELEELLTNNRIWRNRTIDIGVVTAEEALNYGFSGVMLRGSGIQW
DLRKTQPYDVYDQVEFDVPVGSRGDCYDRYLCRVEEMRQSLRIIAQCLNKMPPGEIKVDD
AKVSPPKRAEMKTSMESLIHHFKLYTEGYQVPPGATYTAIEAPKGEFGVYLVSDGSSRPY
RCKIKAPGFAHLAGLDKMSKGHMLADVVAIIGTQDIVFGEVDR
Function
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I. Essential for the assembly of complex I. Redox-sensitive, critical component of the oxygen-sensing pathway in the pulmonary vasculature which plays a key role in acute pulmonary oxygen-sensing and hypoxic pulmonary vasoconstriction. Plays an important role in carotid body sensing of hypoxia. Essential for glia-like neural stem and progenitor cell proliferation, differentiation and subsequent oligodendrocyte or neuronal maturation.
KEGG Pathway
Oxidative phosphorylation (hsa00190 )
Metabolic pathways (hsa01100 )
Thermogenesis (hsa04714 )
Retrograde endocan.binoid sig.ling (hsa04723 )
Non-alcoholic fatty liver disease (hsa04932 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Complex I biogenesis (R-HSA-6799198 )
Respiratory electron transport (R-HSA-611105 )
BioCyc Pathway
MetaCyc:HS08339-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Leigh syndrome DISWQU45 Definitive Autosomal recessive [1]
Mitochondrial complex I deficiency, nuclear type 1 DISCPLX4 Definitive Autosomal recessive [2]
Mitochondrial complex 1 deficiency, nuclear type 6 DISML9YM Strong Autosomal recessive [3]
Leber hereditary optic neuropathy DIS7Y2EE Supportive Mitochondrial [4]
Leigh syndrome with cardiomyopathy DIS2UELC Supportive Autosomal recessive [5]
Mitochondrial complex I deficiency DIS13M7V Supportive Autosomal recessive [6]
Obsolete Leigh syndrome with leukodystrophy DISABU9D Supportive Autosomal recessive [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [8]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [21]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [9]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [10]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [13]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [15]
Menadione DMSJDTY Approved Menadione affects the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [16]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [17]
Cocaine DMSOX7I Approved Cocaine affects the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [18]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [19]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of NADH dehydrogenase iron-sulfur protein 2, mitochondrial (NDUFS2). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol. 2001 Feb;49(2):195-201. doi: 10.1002/1531-8249(20010201)49:2<195::aid-ana39>3.0.co;2-m.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Compound heterozygosity for severe and hypomorphic NDUFS2 mutations cause non-syndromic LHON-like optic neuropathy. J Med Genet. 2017 May;54(5):346-356. doi: 10.1136/jmedgenet-2016-104212. Epub 2016 Dec 28.
5 A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome. Biochim Biophys Acta. 2012 Feb;1822(2):168-75. doi: 10.1016/j.bbadis.2011.10.012. Epub 2011 Oct 20.
6 Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta. 2004 Dec 6;1659(2-3):136-47. doi: 10.1016/j.bbabio.2004.09.006.
7 Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2. Gene. 2013 Mar 1;516(1):162-7. doi: 10.1016/j.gene.2012.12.024. Epub 2012 Dec 22.
8 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
15 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
16 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
17 Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 2012 Aug;11(8):1703-12.
18 Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology. 2009 Jul;57(1):41-8. doi: 10.1016/j.neuropharm.2009.04.005. Epub 2009 Apr 22.
19 Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environ Mol Mutagen. 2007 Apr-May;48(3-4):179-89. doi: 10.1002/em.20245.
20 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.