General Information of Drug Off-Target (DOT) (ID: OTC73XJK)

DOT Name FERM domain-containing protein 5 (FRMD5)
Gene Name FRMD5
Related Disease
Acute coronary syndrome ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Neoplasm ( )
Neurodevelopmental disorder with eye movement abnormalities and ataxia ( )
UniProt ID
FRMD5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF08736 ; PF09380 ; PF00373 ; PF09379
Sequence
MLSRLMSGSSRSLEREYSCTVRLLDDSEYTCTIQRDAKGQYLFDLLCHHLNLLEKDYFGI
RFVDPDKQRHWLEFTKSVVKQLRSQPPFTMCFRVKFYPADPAALKEEITRYLVFLQIKRD
LYHGRLLCKTSDAALLAAYILQAEIGDYDSGKHPEGYSSKFQFFPKHSEKLERKIAEIHK
TELSGQTPATSELNFLRKAQTLETYGVDPHPCKDVSGNAAFLAFTPFGFVVLQGNKRVHF
IKWNEVTKLKFEGKTFYLYVSQKEEKKIILTYFAPTPEACKHLWKCGIENQAFYKLEKSS
QVRTVSSSNLFFKGSRFRYSGRVAKEVMESSAKIKREPPEIHRAGMVPSRSCPSITHGPR
LSSVPRTRRRAVHISIMEGLESLRDSAHSTPVRSTSHGDTFLPHVRSSRTDSNERVAVIA
DEAYSPADSVLPTPVAEHSLELMLLSRQINGATCSIEEEKESEASTPTATEVEALGGELR
ALCQGHSGPEEEQVNKFVLSVLRLLLVTMGLLFVLLLLLIILTESDLDIAFFRDIRQTPE
FEQFHYQYFCPLRRWFACKIRSVVSLLIDT
Function
May be involved in regulation of cell migration. May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation.

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute coronary syndrome DIS7DYEW Strong Genetic Variation [1]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [2]
Lung cancer DISCM4YA Strong Biomarker [3]
Lung carcinoma DISTR26C Strong Biomarker [3]
Neoplasm DISZKGEW Strong Biomarker [3]
Neurodevelopmental disorder with eye movement abnormalities and ataxia DISB2GTU Strong Autosomal dominant [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of FERM domain-containing protein 5 (FRMD5). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of FERM domain-containing protein 5 (FRMD5). [10]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of FERM domain-containing protein 5 (FRMD5). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of FERM domain-containing protein 5 (FRMD5). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of FERM domain-containing protein 5 (FRMD5). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of FERM domain-containing protein 5 (FRMD5). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of FERM domain-containing protein 5 (FRMD5). [11]
Temozolomide DMKECZD Approved Temozolomide increases the expression of FERM domain-containing protein 5 (FRMD5). [12]
Triclosan DMZUR4N Approved Triclosan decreases the expression of FERM domain-containing protein 5 (FRMD5). [13]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of FERM domain-containing protein 5 (FRMD5). [14]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of FERM domain-containing protein 5 (FRMD5). [15]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of FERM domain-containing protein 5 (FRMD5). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of FERM domain-containing protein 5 (FRMD5). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of FERM domain-containing protein 5 (FRMD5). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of FERM domain-containing protein 5 (FRMD5). [19]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of FERM domain-containing protein 5 (FRMD5). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Pharmacogenetic meta-analysis of baseline risk factors, pharmacodynamic, efficacy and tolerability endpoints from two large global cardiovascular outcomes trials for darapladib.PLoS One. 2017 Jul 28;12(7):e0182115. doi: 10.1371/journal.pone.0182115. eCollection 2017.
2 C-terminal truncated HBx protein activates caveolin-1/LRP6/-catenin/FRMD5 axis in promoting hepatocarcinogenesis.Cancer Lett. 2019 Mar 1;444:60-69. doi: 10.1016/j.canlet.2018.12.003. Epub 2018 Dec 21.
3 FERM-containing protein FRMD5 is a p120-catenin interacting protein that regulates tumor progression.FEBS Lett. 2012 Sep 21;586(19):3044-50. doi: 10.1016/j.febslet.2012.07.019. Epub 2012 Jul 27.
4 Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. Am J Hum Genet. 2019 Dec 5;105(6):1274-1285. doi: 10.1016/j.ajhg.2019.11.003. Epub 2019 Nov 27.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
7 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
14 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
15 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
16 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
17 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.