General Information of Drug Off-Target (DOT) (ID: OTILR60R)

DOT Name Excitatory amino acid transporter 1 (SLC1A3)
Synonyms Sodium-dependent glutamate/aspartate transporter 1; GLAST-1; Solute carrier family 1 member 3
Gene Name SLC1A3
Related Disease
Episodic ataxia type 6 ( )
UniProt ID
EAA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5LLM; 5LLU; 5LM4; 5MJU; 7NPW
Pfam ID
PF00375
Sequence
MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIV
GTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMG
MRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPP
NLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNG
VNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGK
IVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITAL
GTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFE
LNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRT
TTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSET
KM
Function
Sodium-dependent, high-affinity amino acid transporter that mediates the uptake of L-glutamate and also L-aspartate and D-aspartate. Functions as a symporter that transports one amino acid molecule together with two or three Na(+) ions and one proton, in parallel with the counter-transport of one K(+) ion. Mediates Cl(-) flux that is not coupled to amino acid transport; this avoids the accumulation of negative charges due to aspartate and Na(+) symport. Plays a redundant role in the rapid removal of released glutamate from the synaptic cleft, which is essential for terminating the postsynaptic action of glutamate.
Tissue Specificity Detected in brain . Detected at very much lower levels in heart, lung, placenta and skeletal muscle . Highly expressed in cerebellum, but also found in frontal cortex, hippocampus and basal ganglia .
KEGG Pathway
Sy.ptic vesicle cycle (hsa04721 )
Glutamatergic sy.pse (hsa04724 )
Huntington disease (hsa05016 )
Reactome Pathway
Glutamate Neurotransmitter Release Cycle (R-HSA-210500 )
Transport of inorganic cations/anions and amino acids/oligopeptides (R-HSA-425393 )
Defective SLC1A3 causes episodic ataxia 6 (EA6) (R-HSA-5619062 )
Astrocytic Glutamate-Glutamine Uptake And Metabolism (R-HSA-210455 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Episodic ataxia type 6 DIS9P3RQ Definitive Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Excitatory amino acid transporter 1 (SLC1A3) affects the response to substance of Cisplatin. [24]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Excitatory amino acid transporter 1 (SLC1A3). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [8]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [9]
Testosterone DM7HUNW Approved Testosterone increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [10]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [9]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [13]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [14]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [15]
ANW-32821 DMMJOZD Phase 2 ANW-32821 increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Excitatory amino acid transporter 1 (SLC1A3). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [20]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Excitatory amino acid transporter 1 (SLC1A3). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Excitatory amino acid transporter 1 (SLC1A3). [21]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Excitatory amino acid transporter 1 (SLC1A3). [23]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
8 Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J Steroid Biochem Mol Biol. 2016 Oct;163:77-87.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
14 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
15 Capturing time-dependent activation of genes and stress-response pathways using transcriptomics in iPSC-derived renal proximal tubule cells. Cell Biol Toxicol. 2023 Aug;39(4):1773-1793. doi: 10.1007/s10565-022-09783-5. Epub 2022 Dec 31.
16 Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. J Biol Chem. 2015 Oct 16;290(42):25322-32. doi: 10.1074/jbc.M115.645234. Epub 2015 Aug 20.
17 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Bisphenol A exposure disrupts aspartate transport in HepG2 cells. J Biochem Mol Toxicol. 2020 Aug;34(8):e22516. doi: 10.1002/jbt.22516. Epub 2020 May 3.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
23 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
24 Role of transporter genes in cisplatin resistance. In Vivo. 2008 May-Jun;22(3):279-83.