General Information of Drug Off-Target (DOT) (ID: OTM9YSIZ)

DOT Name Unconventional myosin-Ie (MYO1E)
Synonyms Myosin-Ic; Unconventional myosin 1E
Gene Name MYO1E
Related Disease
Steroid-resistant nephrotic syndrome ( )
Focal segmental glomerulosclerosis 6 ( )
Hepatocellular carcinoma ( )
Metastatic malignant neoplasm ( )
Metastatic prostate carcinoma ( )
Neoplasm ( )
Nephropathy ( )
Prostate cancer ( )
Prostate carcinoma ( )
Severe combined immunodeficiency ( )
Vascular disease ( )
Chronic obstructive pulmonary disease ( )
Focal segmental glomerulosclerosis ( )
Familial idiopathic steroid-resistant nephrotic syndrome ( )
Nephrotic syndrome, type 2 ( )
Nephrotic syndrome ( )
X-linked hydrocephalus with stenosis of the aqueduct of Sylvius ( )
UniProt ID
MYO1E_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00063 ; PF06017 ; PF00018
Sequence
MGSKGVYQYHWQSHNVKHSGVDDMVLLSKITENSIVENLKKRYMDDYIFTYIGSVLISVN
PFKQMPYFGEKEIEMYQGAAQYENPPHIYALADNMYRNMIIDRENQCVIISGESGAGKTV
AAKYIMSYISRVSGGGTKVQHVKDIILQSNPLLEAFGNAKTVRNNNSSRFGKYFEIQFSP
GGEPDGGKISNFLLEKSRVVMRNPGERSFHIFYQLIEGASAEQKHSLGITSMDYYYYLSL
SGSYKVDDIDDRREFQETLHAMNVIGIFAEEQTLVLQIVAGILHLGNISFKEVGNYAAVE
SEEFLAFPAYLLGINQDRLKEKLTSRQMDSKWGGKSESIHVTLNVEQACYTRDALAKALH
ARVFDFLVDSINKAMEKDHEEYNIGVLDIYGFEIFQKNGFEQFCINFVNEKLQQIFIELT
LKAEQEEYVQEGIRWTPIEYFNNKIVCDLIENKVNPPGIMSILDDVCATMHAVGEGADQT
LLQKLQMQIGSHEHFNSWNQGFIIHHYAGKVSYDMDGFCERNRDVLFMDLIELMQSSELP
FIKSLFPENLQADKKGRPTTAGSKIKKQANDLVSTLMKCTPHYIRCIKPNETKKPRDWEE
SRVKHQVEYLGLKENIRVRRAGYAYRRIFQKFLQRYAILTKATWPSWQGEEKQGVLHLLQ
SVNMDSDQFQLGRSKVFIKAPESLFLLEEMRERKYDGYARVIQKSWRKFVARKKYVQMRE
EASDLLLNKKERRRNSINRNFIGDYIGMEEHPELQQFVGKREKIDFADTVTKYDRRFKGV
KRDLLLTPKCLYLIGREKVKQGPDKGLVKEVLKRKIEIERILSVSLSTMQDDIFILHEQE
YDSLLESVFKTEFLSLLAKRYEEKTQKQLPLKFSNTLELKLKKENWGPWSAGGSRQVQFH
QGFGDLAVLKPSNKVLQVSIGPGLPKNSRPTRRNTTQNTGYSSGTQNANYPVRAAPPPPG
YHQNGVIRNQYVPYPHAPGSQRSNQKSLYTSMARPPLPRQQSTSSDRVSQTPESLDFLKV
PDQGAAGVRRQTTSRPPPAGGRPKPQPKPKPQVPQCKALYAYDAQDTDELSFNANDIIDI
IKEDPSGWWTGRLRGKQGLFPNNYVTKI
Function
Actin-based motor molecule with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails bind to membranous compartments, which are then moved relative to actin filaments. Binds to membranes containing anionic phospholipids via its tail domain. Involved in clathrin-mediated endocytosis and intracellular movement of clathrin-coated vesicles. Required for normal morphology of the glomerular basement membrane, normal development of foot processes by kidney podocytes and normal kidney function. In dendritic cells, may control the movement of class II-containing cytoplasmic vesicles along the actin cytoskeleton by connecting them with the actin network via ARL14EP and ARL14.
Tissue Specificity Expressed in the immune system. In the kidney, predominantly expressed in the glomerulus, including podocytes.
KEGG Pathway
Motor proteins (hsa04814 )
Pathogenic Escherichia coli infection (hsa05130 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Steroid-resistant nephrotic syndrome DISVEBC9 Definitive Genetic Variation [1]
Focal segmental glomerulosclerosis 6 DIST4PBC Strong Autosomal recessive [2]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [3]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [4]
Metastatic prostate carcinoma DISVBEZ9 Strong Altered Expression [5]
Neoplasm DISZKGEW Strong Altered Expression [4]
Nephropathy DISXWP4P Strong Genetic Variation [6]
Prostate cancer DISF190Y Strong Altered Expression [4]
Prostate carcinoma DISMJPLE Strong Altered Expression [4]
Severe combined immunodeficiency DIS6MF4Q Strong Altered Expression [7]
Vascular disease DISVS67S Strong Biomarker [8]
Chronic obstructive pulmonary disease DISQCIRF moderate Biomarker [9]
Focal segmental glomerulosclerosis DISJNHH0 moderate Genetic Variation [10]
Familial idiopathic steroid-resistant nephrotic syndrome DISQ53RS Supportive Autosomal dominant [11]
Nephrotic syndrome, type 2 DISIRFO1 Disputed GermlineCausalMutation [11]
Nephrotic syndrome DISSPSC2 Limited Genetic Variation [6]
X-linked hydrocephalus with stenosis of the aqueduct of Sylvius DIS6QXIR Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Methotrexate DM2TEOL Approved Unconventional myosin-Ie (MYO1E) affects the response to substance of Methotrexate. [34]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Unconventional myosin-Ie (MYO1E). [13]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Unconventional myosin-Ie (MYO1E). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Unconventional myosin-Ie (MYO1E). [30]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Unconventional myosin-Ie (MYO1E). [30]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Unconventional myosin-Ie (MYO1E). [14]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Unconventional myosin-Ie (MYO1E). [15]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Unconventional myosin-Ie (MYO1E). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Unconventional myosin-Ie (MYO1E). [17]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Unconventional myosin-Ie (MYO1E). [18]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Unconventional myosin-Ie (MYO1E). [19]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Unconventional myosin-Ie (MYO1E). [21]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Unconventional myosin-Ie (MYO1E). [22]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Unconventional myosin-Ie (MYO1E). [23]
Hydroxyurea DMOQVU9 Approved Hydroxyurea decreases the expression of Unconventional myosin-Ie (MYO1E). [23]
2-deoxyglucose DMIAHVU Approved 2-deoxyglucose decreases the expression of Unconventional myosin-Ie (MYO1E). [23]
Bleomycin DMNER5S Approved Bleomycin decreases the expression of Unconventional myosin-Ie (MYO1E). [23]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Unconventional myosin-Ie (MYO1E). [24]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Unconventional myosin-Ie (MYO1E). [25]
Camptothecin DM6CHNJ Phase 3 Camptothecin decreases the expression of Unconventional myosin-Ie (MYO1E). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Unconventional myosin-Ie (MYO1E). [27]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Unconventional myosin-Ie (MYO1E). [28]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Unconventional myosin-Ie (MYO1E). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Unconventional myosin-Ie (MYO1E). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Unconventional myosin-Ie (MYO1E). [32]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Unconventional myosin-Ie (MYO1E). [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Unconventional myosin-Ie (MYO1E). [26]
------------------------------------------------------------------------------------

References

1 Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome.Kidney Int. 2011 Aug;80(4):389-96. doi: 10.1038/ki.2011.148. Epub 2011 Jun 22.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Genes associated with recurrence of hepatocellular carcinoma: integrated analysis by gene expression and methylation profiling.J Korean Med Sci. 2011 Nov;26(11):1428-38. doi: 10.3346/jkms.2011.26.11.1428. Epub 2011 Oct 27.
4 Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.PLoS One. 2014 Sep 26;9(9):e108609. doi: 10.1371/journal.pone.0108609. eCollection 2014.
5 Myosin isoform expressed in metastatic prostate cancer stimulates cell invasion.Sci Rep. 2017 Aug 16;7(1):8476. doi: 10.1038/s41598-017-09158-5.
6 Promises and pitfalls of whole-exome sequencing exemplified by a nephrotic syndrome family.Mol Genet Genomics. 2020 Jan;295(1):135-142. doi: 10.1007/s00438-019-01609-0. Epub 2019 Sep 13.
7 Identification of Proteins Differentially Expressed by Adipose-derived Mesenchymal Stem Cells Isolated from Immunodeficient Mice.Int J Mol Sci. 2019 May 30;20(11):2672. doi: 10.3390/ijms20112672.
8 Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE.J Cell Mol Med. 2019 Feb;23(2):1528-1540. doi: 10.1111/jcmm.14060. Epub 2018 Nov 28.
9 Whole exome sequencing identifies novel candidate genes that modify chronic obstructive pulmonary disease susceptibility.Hum Genomics. 2016 Jan 7;10:1. doi: 10.1186/s40246-015-0058-7.
10 Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast.Dis Model Mech. 2015 Aug 1;8(8):891-902. doi: 10.1242/dmm.020214. Epub 2015 Jun 18.
11 MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med. 2011 Jul 28;365(4):295-306. doi: 10.1056/NEJMoa1101273. Epub 2011 Jul 14.
12 Coinheritance of COL4A5 and MYO1E mutations accentuate the severity of kidney disease.Pediatr Nephrol. 2015 Sep;30(9):1459-65. doi: 10.1007/s00467-015-3067-9. Epub 2015 Mar 5.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
15 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
16 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
19 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
20 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
21 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
22 Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett. 2004 Oct 8;214(1):19-33.
23 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
24 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
25 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
26 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
27 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
28 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
29 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
30 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
31 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
33 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
34 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.