General Information of Drug Off-Target (DOT) (ID: OTOLSYOI)

DOT Name ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1)
Synonyms
ATP synthase lipid-binding protein; ATP synthase membrane subunit c locus 1; ATP synthase proteolipid P1; ATP synthase proton-transporting mitochondrial F(0) complex subunit C1; ATPase protein 9; ATPase subunit c
Gene Name ATP5MC1
Related Disease
Non-insulin dependent diabetes ( )
Alzheimer disease ( )
B-cell neoplasm ( )
Clear cell renal carcinoma ( )
CLN2 Batten disease ( )
Head-neck squamous cell carcinoma ( )
Late infantile neuronal ceroid lipofuscinosis ( )
Neuronal ceroid lipofuscinosis ( )
UniProt ID
AT5G1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8H9F; 8H9J; 8H9M; 8H9Q; 8H9S; 8H9T; 8H9U; 8H9V
Pfam ID
PF00137
Sequence
MQTAGALFISPALIRCCTRGLIRPVSASFLNSPVNSSKQPSYSNFPLQVARREFQTSVVS
RDIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPSLKQQLFSYAILGFALSEA
MGLFCLMVAFLILFAM
Function
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain. A homomeric c-ring of probably 10 subunits is part of the complex rotary element.
KEGG Pathway
Oxidative phosphorylation (hsa00190 )
Metabolic pathways (hsa01100 )
Thermogenesis (hsa04714 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
Formation of ATP by chemiosmotic coupling (R-HSA-163210 )
Cristae formation (R-HSA-8949613 )
Mitochondrial protein import (R-HSA-1268020 )
BioCyc Pathway
MetaCyc:ENSG00000159199-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-insulin dependent diabetes DISK1O5Z Definitive Genetic Variation [1]
Alzheimer disease DISF8S70 Strong Altered Expression [2]
B-cell neoplasm DISVY326 Strong Altered Expression [3]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [4]
CLN2 Batten disease DISZC5YB Strong Genetic Variation [5]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [6]
Late infantile neuronal ceroid lipofuscinosis DISI3RIL Strong Biomarker [7]
Neuronal ceroid lipofuscinosis DIS9A4K4 Strong Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [9]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [10]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [11]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [12]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [13]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [14]
Quercetin DM3NC4M Approved Quercetin decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [15]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [16]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [17]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [19]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [20]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [21]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [23]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [24]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of ATP synthase F(0) complex subunit C1, mitochondrial (ATP5MC1). [18]
------------------------------------------------------------------------------------

References

1 Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes.Nat Commun. 2018 Jul 27;9(1):2941. doi: 10.1038/s41467-018-04951-w.
2 Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease.Hum Mol Genet. 2015 Nov 15;24(22):6492-504. doi: 10.1093/hmg/ddv358. Epub 2015 Sep 10.
3 Comparative analysis of testis transcriptomes associated with male infertility in triploid cyprinid fish.Reprod Fertil Dev. 2019 Jan;31(2):248-260. doi: 10.1071/RD18034.
4 Systematic Analysis of the Expression of the Mitochondrial ATP Synthase (Complex V) Subunits in Clear Cell Renal Cell Carcinoma.Transl Oncol. 2017 Aug;10(4):661-668. doi: 10.1016/j.tranon.2017.06.002. Epub 2017 Jun 30.
5 Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells.PLoS One. 2011 Feb 17;6(2):e17118. doi: 10.1371/journal.pone.0017118.
6 Impaired mitochondrial protein synthesis in head and neck squamous cell carcinoma.Mitochondrion. 2015 Sep;24:113-21. doi: 10.1016/j.mito.2015.07.123. Epub 2015 Aug 1.
7 Abnormal degradative pathway of mitochondrial ATP synthase subunit c in late infantile neuronal ceroid-lipofuscinosis (Batten disease).Am J Med Genet. 1995 Jun 5;57(2):254-9. doi: 10.1002/ajmg.1320570229.
8 CLN6 p.I154del mutation causing late infantile neuronal ceroid lipofuscinosis in a large consanguineous Moroccan family.Indian J Pediatr. 2013 Aug;80(8):694-6. doi: 10.1007/s12098-012-0889-3. Epub 2012 Nov 22.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
12 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
13 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
14 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
15 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
16 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
20 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
23 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
24 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
25 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.