General Information of Drug Off-Target (DOT) (ID: OTVFS16E)

DOT Name UDP-glucose 4-epimerase (GALE)
Synonyms EC 5.1.3.2; Galactowaldenase; UDP-N-acetylgalactosamine 4-epimerase; UDP-GalNAc 4-epimerase; UDP-N-acetylglucosamine 4-epimerase; UDP-GlcNAc 4-epimerase; EC 5.1.3.7; UDP-galactose 4-epimerase
Gene Name GALE
Related Disease
Galactose epimerase deficiency ( )
UniProt ID
GALE_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1EK5; 1EK6; 1HZJ; 1I3K; 1I3L; 1I3M; 1I3N
EC Number
5.1.3.2; 5.1.3.7
Pfam ID
PF16363
Sequence
MAEKVLVTGGAGYIGSHTVLELLEAGYLPVVIDNFHNAFRGGGSLPESLRRVQELTGRSV
EFEEMDILDQGALQRLFKKYSFMAVIHFAGLKAVGESVQKPLDYYRVNLTGTIQLLEIMK
AHGVKNLVFSSSATVYGNPQYLPLDEAHPTGGCTNPYGKSKFFIEEMIRDLCQADKTWNA
VLLRYFNPTGAHASGCIGEDPQGIPNNLMPYVSQVAIGRREALNVFGNDYDTEDGTGVRD
YIHVVDLAKGHIAALRKLKEQCGCRIYNLGTGTGYSVLQMVQAMEKASGKKIPYKVVARR
EGDVAACYANPSLAQEELGWTAALGLDRMCEDLWRWQKQNPSGFGTQA
Function
Catalyzes two distinct but analogous reactions: the reversible epimerization of UDP-glucose to UDP-galactose and the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine. The reaction with UDP-Gal plays a critical role in the Leloir pathway of galactose catabolism in which galactose is converted to the glycolytic intermediate glucose 6-phosphate. It contributes to the catabolism of dietary galactose and enables the endogenous biosynthesis of both UDP-Gal and UDP-GalNAc when exogenous sources are limited. Both UDP-sugar interconversions are important in the synthesis of glycoproteins and glycolipids.
KEGG Pathway
Galactose metabolism (hsa00052 )
Amino sugar and nucleotide sugar metabolism (hsa00520 )
Metabolic pathways (hsa01100 )
Biosynthesis of nucleotide sugars (hsa01250 )
Reactome Pathway
Galactose catabolism (R-HSA-70370 )
Defective GALE causes EDG (R-HSA-5609977 )
BioCyc Pathway
MetaCyc:HS04117-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Galactose epimerase deficiency DIS16BDZ Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of UDP-glucose 4-epimerase (GALE). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of UDP-glucose 4-epimerase (GALE). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of UDP-glucose 4-epimerase (GALE). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of UDP-glucose 4-epimerase (GALE). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of UDP-glucose 4-epimerase (GALE). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of UDP-glucose 4-epimerase (GALE). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of UDP-glucose 4-epimerase (GALE). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of UDP-glucose 4-epimerase (GALE). [9]
Nicotine DMWX5CO Approved Nicotine decreases the expression of UDP-glucose 4-epimerase (GALE). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of UDP-glucose 4-epimerase (GALE). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of UDP-glucose 4-epimerase (GALE). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of UDP-glucose 4-epimerase (GALE). [14]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of UDP-glucose 4-epimerase (GALE). [15]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of UDP-glucose 4-epimerase (GALE). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of UDP-glucose 4-epimerase (GALE). [12]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
UDP-glucuronic acid DMW16X2 Investigative UDP-glucuronic acid affects the binding of UDP-glucose 4-epimerase (GALE). [17]
UDP-glucose DMLT4JA Investigative UDP-glucose affects the binding of UDP-glucose 4-epimerase (GALE). [17]
Uridine diphosphate galactose DMPA0BJ Investigative Uridine diphosphate galactose affects the binding of UDP-glucose 4-epimerase (GALE). [17]
Uridine-Diphosphate-N-Acetylgalactosamine DMXHO6J Investigative Uridine-Diphosphate-N-Acetylgalactosamine affects the binding of UDP-glucose 4-epimerase (GALE). [17]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
10 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
16 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
17 Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chem Biol Interact. 2015 Jun 5;234:114-25.