General Information of Drug Off-Target (DOT) (ID: OTYOFT3K)

DOT Name Lysophosphatidic acid receptor 3 (LPAR3)
Synonyms LPA receptor 3; LPA-3; Lysophosphatidic acid receptor Edg-7
Gene Name LPAR3
UniProt ID
LPAR3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00001
Sequence
MNECHYDKHMDFFYNRSNTDTVDDWTGTKLVIVLCVGTFFCLFIFFSNSLVIAAVIKNRK
FHFPFYYLLANLAAADFFAGIAYVFLMFNTGPVSKTLTVNRWFLRQGLLDSSLTASLTNL
LVIAVERHMSIMRMRVHSNLTKKRVTLLILLVWAIAIFMGAVPTLGWNCLCNISACSSLA
PIYSRSYLVFWTVSNLMAFLIMVVVYLRIYVYVKRKTNVLSPHTSGSISRRRTPMKLMKT
VMTVLGAFVVCWTPGLVVLLLDGLNCRQCGVQHVKRWFLLLALLNSVVNPIIYSYKDEDM
YGTMKKMICCFSQENPERRPSRIPSTVLSRSDTGSQYIEDSISQGAVCNKSTS
Function
Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities. May play a role in the development of ovarian cancer. Seems to be coupled to the G(i)/G(o) and G(q) families of heteromeric G proteins.
Tissue Specificity
Most abundantly expressed in prostate, testes, pancreas, and heart, with moderate levels in lung and ovary. No detectable expression in brain, placenta, liver, skeletal muscle, kidney, spleen, thymus, small intestine, colon, or peripheral blood leukocytes.
KEGG Pathway
Rap1 sig.ling pathway (hsa04015 )
Phospholipase D sig.ling pathway (hsa04072 )
Neuroactive ligand-receptor interaction (hsa04080 )
PI3K-Akt sig.ling pathway (hsa04151 )
Pathways in cancer (hsa05200 )
Reactome Pathway
G alpha (i) signalling events (R-HSA-418594 )
Lysosphingolipid and LPA receptors (R-HSA-419408 )
G alpha (q) signalling events (R-HSA-416476 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [1]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [3]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [5]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [6]
Progesterone DMUY35B Approved Progesterone increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [7]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [14]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [15]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of Lysophosphatidic acid receptor 3 (LPAR3). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Lysophosphatidic acid receptor 3 (LPAR3). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Lysophosphatidic acid receptor 3 (LPAR3). [10]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
3 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
6 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
7 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
8 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
12 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
15 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
16 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.