General Information of Drug Combination (ID: DCMTEK5)

Drug Combination Name
Lapatinib Midazolam
Indication
Disease Entry Status REF
Neoplasms, Breast Phase 1 [1]
Component Drugs Lapatinib   DM3BH1Y Midazolam   DMXOELT
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Lapatinib
Disease Entry ICD 11 Status REF
Breast cancer 2C60-2C65 Approved [2]
Gastroesophageal junction adenocarcinoma 2B71 Approved [3]
Melanoma 2C30 Approved [3]
Lapatinib Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Erbb2 tyrosine kinase receptor (HER2) TT6EO5L ERBB2_HUMAN Inhibitor [8]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [8]
Eukaryotic elongation factor 2 kinase (eEF-2K) TT1QFLA EF2K_HUMAN Inhibitor [9]
------------------------------------------------------------------------------------
Lapatinib Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [11]
------------------------------------------------------------------------------------
Lapatinib Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [12]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [13]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [12]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [13]
------------------------------------------------------------------------------------
Lapatinib Interacts with 36 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Activity [14]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [15]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [16]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [16]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [16]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Activity [16]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [17]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Decreases Activity [14]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [18]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [19]
DNA topoisomerase 1 (TOP1) OT51O0CF TOP1_HUMAN Decreases Expression [20]
DNA topoisomerase 2-alpha (TOP2A) OT6LPS08 TOP2A_HUMAN Decreases Expression [20]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Expression [20]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [18]
Phosphatidylcholine translocator ABCB4 (ABCB4) OTE6PY83 MDR3_HUMAN Decreases Activity [21]
Receptor tyrosine-protein kinase erbB-3 (ERBB3) OTRSST0A ERBB3_HUMAN Decreases Activity [22]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [23]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [14]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [18]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [18]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Activity [14]
DNA replication licensing factor MCM7 (MCM7) OT6FXC6K MCM7_HUMAN Decreases Expression [18]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [20]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [14]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [20]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [20]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [19]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [24]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [25]
HLA class II histocompatibility antigen, DQ alpha 1 chain (HLA-DQA1) OTC6GISG DQA1_HUMAN Increases ADR [26]
Zinc finger protein SNAI1 (SNAI1) OTDPYAMC SNAI1_HUMAN Decreases Response To Substance [27]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Increases Metabolism [20]
Cytochrome P450 3A7 (CYP3A7) OTTCDHHM CP3A7_HUMAN Increases Metabolism [20]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Response To Substance [27]
Tenascin-X (TNXB) OTVBWAV5 TENX_HUMAN Increases ADR [26]
HLA class II histocompatibility antigen, DQ beta 1 chain (HLA-DQB1) OTVVI3UI DQB1_HUMAN Increases ADR [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 DOT(s)
Indication(s) of Midazolam
Disease Entry ICD 11 Status REF
Agitation 6A70.3 Approved [4]
Anxiety N.A. Approved [4]
Irritability MB24 Approved [5]
Pain MG30-MG3Z Approved [4]
Traumatic brain injury NA07.Z Approved [4]
Epilepsy 8A60-8A68 Phase 3 [6]
Midazolam Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Translocator protein (TSPO) TTPTXIN TSPO_HUMAN Modulator [28]
------------------------------------------------------------------------------------
Midazolam Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [29]
------------------------------------------------------------------------------------
Midazolam Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [30]
Cytochrome P450 4B1 (CYP4B1) DEMF740 CP4B1_HUMAN Metabolism [31]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [32]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [31]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [33]
------------------------------------------------------------------------------------
Midazolam Interacts with 10 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [34]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Increases Hydroxylation [35]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [36]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [34]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [15]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [24]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases ADR [37]
Cytochrome P450 2E1 (CYP2E1) OTHQ17JG CP2E1_HUMAN Increases Metabolism [38]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases ADR [37]
Gamma-aminobutyric acid receptor subunit alpha-6 (GABRA6) OTX4UC3O GBRA6_HUMAN Decreases Response To Substance [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DOT(s)

References

1 ClinicalTrials.gov (NCT00258050) To Examine The Effects Of Lapatinib On Orally And Intravenously Administered Midazolam In Cancer Patients
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5692).
3 Lapatinib FDA Label
4 Midazolam FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 3342).
6 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
7 UGT-dependent regioselective glucuronidation of ursodeoxycholic acid and obeticholic acid and selective transport of the consequent acyl glucuronides by OATP1B1 and 1B3. Chem Biol Interact. 2019 Sep 1;310:108745. doi: 10.1016/j.cbi.2019.108745. Epub 2019 Jul 9.
8 Triple negative breast cancer--current status and prospective targeted treatment based on HER1 (EGFR), TOP2A and C-MYC gene assessment. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009 Mar;153(1):13-7.
9 Inhibition of eEF-2 kinase sensitizes human nasopharyngeal carcinoma cells to lapatinib-induced apoptosis through the Src and Erk pathways.BMC Cancer. 2016 Oct 19;16(1):813.
10 Tarascon Pocket Pharmacopoeia 2018 Classic Shirt-Pocket Edition.
11 The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008 Apr;36(4):695-701.
12 Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010 Oct;78(4):693-703.
13 Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706.
14 The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005 Jan 1;65(1):18-25.
15 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
16 P450 3A-catalyzed O-dealkylation of lapatinib induces mitochondrial stress and activates Nrf2. Chem Res Toxicol. 2016 May 16;29(5):784-96.
17 Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005 Sep 15;24(41):6213-21. doi: 10.1038/sj.onc.1208774.
18 CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer. 2014 Jul;5(7-8):261-72. doi: 10.18632/genesandcancer.24.
19 Effects of lapatinib on cell proliferation and apoptosis in NB4 cells. Oncol Lett. 2018 Jan;15(1):235-242. doi: 10.3892/ol.2017.7342. Epub 2017 Nov 3.
20 The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol Sci. 2023 Dec 21;197(1):69-78. doi: 10.1093/toxsci/kfad099.
21 Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chem Res Toxicol. 2017 May 15;30(5):1219-1229. doi: 10.1021/acs.chemrestox.7b00048. Epub 2017 May 4.
22 Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin Cancer Res. 2009 Jun 15;15(12):4147-56. doi: 10.1158/1078-0432.CCR-08-2814. Epub 2009 Jun 9.
23 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
24 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
25 The K-Ras effector p38 MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem. 2017 Sep 8;292(36):15070-15079. doi: 10.1074/jbc.M117.779488. Epub 2017 Jul 24.
26 HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol. 2011 Feb 20;29(6):667-73. doi: 10.1200/JCO.2010.31.3197. Epub 2011 Jan 18.
27 Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol. 2016 Feb;71:12-23. doi: 10.1016/j.biocel.2015.11.014. Epub 2015 Nov 28.
28 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
29 A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol. 2009 Jan;379(1):11-26.
30 Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 2010 Jun;38(6):981-7.
31 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
32 In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003 Jul;31(7):938-44.
33 Further characterization of the expression in liver and catalytic activity of CYP2B6. J Pharmacol Exp Ther. 1998 Sep;286(3):1253-9.
34 Benzodiazepines medazepam and midazolam are activators of pregnane X receptor and weak inducers of CYP3A4: investigation in primary cultures of human hepatocytes and hepatocarcinoma cell lines. Toxicol Lett. 2010 Mar 15;193(2):183-8.
35 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
36 Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996 Feb;49(2):311-8.
37 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
38 Molecular and functional characterization of drug-metabolizing enzymes and transporter expression in the novel spontaneously immortalized human hepatocyte line HC-04. Toxicol In Vitro. 2007 Dec;21(8):1390-401. doi: 10.1016/j.tiv.2007.05.003. Epub 2007 May 17.
39 GABA alpha6 receptors mediate midazolam-induced anxiolysis. J Clin Anesth. 2002 May;14(3):206-9. doi: 10.1016/s0952-8180(02)00343-4.