General Information of Drug Combination (ID: DCPCBUW)

Drug Combination Name
Dopamine Clopidogrel
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Dopamine   DMPGUCF Clopidogrel   DMOL54H
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 11.8
Bliss Independence Score: 11.8
Loewe Additivity Score: 25.03
LHighest Single Agent (HSA) Score: 25.05

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Dopamine
Disease Entry ICD 11 Status REF
Acromegaly 5A60.0 Approved [2]
Carcinoid syndrome 5B10 Approved [2]
Parkinson disease 8A00.0 Approved [3]
Parkinsonian disorder N.A. Approved [2]
Postencephalitic Parkinson disease N.A. Approved [2]
Hypotension BA20-BA21 Phase 1 [3]
Dopamine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Dopamine D2 receptor (D2R) TTEX248 DRD2_HUMAN Agonist [10]
------------------------------------------------------------------------------------
Dopamine Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [11]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [12]
Vesicular amine transporter 2 (SLC18A2) DTT7VPB VMAT2_HUMAN Substrate [13]
Vesicular amine transporter 1 (SLC18A1) DTM953D VMAT1_HUMAN Substrate [13]
Synaptic vesicle glycoprotein 2C (SLC22B3) DT7A9GF SV2C_HUMAN Substrate [14]
Sodium-dependent dopamine transporter (SLC6A3) DT3BA8L SC6A3_HUMAN Substrate [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Dopamine Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [16]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [17]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [17]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [17]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [18]
Monoamine oxidase type B (MAO-B) DET2NXO AOFB_HUMAN Metabolism [19]
Sulfotransferase 1B1 (SULT1B1) DED5UR3 ST1B1_HUMAN Metabolism [20]
Dopamine dehydroxylase (dadH) DEL0D64 DADH_EGGLN Metabolism [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Dopamine Interacts with 76 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases Abundance [22]
Amine oxidase B (MAOB) OTTDFM1O AOFB_HUMAN Decreases Amination [23]
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [24]
Sodium-dependent dopamine transporter (SLC6A3) OT39XG28 SC6A3_HUMAN Increases Activity [25]
Synaptic vesicular amine transporter (SLC18A2) OTUOMMM6 VMAT2_HUMAN Decreases Activity [26]
Glial fibrillary acidic protein (GFAP) OTQ01ZAS GFAP_HUMAN Increases ADR [27]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [28]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [28]
Bcl-2-binding component 3, isoforms 3/4 (BBC3) OTUAXDAY BBC3B_HUMAN Increases Expression [28]
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Activity [29]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [29]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Activity [29]
Methionine synthase (MTR) OTF2K2TA METH_HUMAN Increases Activity [30]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [31]
POTE ankyrin domain family member F (POTEF) OTV3WXYE POTEF_HUMAN Increases Expression [7]
Citrate synthase, mitochondrial (CS) OTYLYXMO CISY_HUMAN Increases Expression [7]
ATP synthase subunit d, mitochondrial (ATP5PD) OTAJDLE2 ATP5H_HUMAN Increases Expression [7]
Prelamin-A/C (LMNA) OT3SG7ZR LMNA_HUMAN Increases Expression [7]
Fructose-bisphosphate aldolase A (ALDOA) OTWRFTIB ALDOA_HUMAN Increases Expression [7]
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) OTBPMIMW G3P_HUMAN Increases Expression [7]
ADP/ATP translocase 2 (SLC25A5) OT1XIBMN ADT2_HUMAN Increases Expression [7]
Cathepsin D (CTSD) OTQZ36F3 CATD_HUMAN Increases Expression [7]
Heat shock protein HSP 90-beta (HSP90AB1) OTR69EG7 HS90B_HUMAN Increases Expression [7]
Small ribosomal subunit protein uS2 (RPSA) OTJZHEGT RSSA_HUMAN Increases Expression [7]
POTE ankyrin domain family member I (POTEI) OTST4AVP POTEI_HUMAN Decreases Expression [7]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [7]
ADP/ATP translocase 3 (SLC25A6) OT9KAJP7 ADT3_HUMAN Increases Expression [7]
Annexin A3 (ANXA3) OTDD8OI7 ANXA3_HUMAN Increases Expression [7]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [7]
Endoplasmin (HSP90B1) OT02XLBR ENPL_HUMAN Increases Expression [7]
Histone H1.5 (H1-5) OTAN7RD9 H15_HUMAN Increases Expression [7]
Heat shock 70 kDa protein 6 (HSPA6) OTH4S7WB HSP76_HUMAN Increases Expression [7]
Nucleolin (NCL) OTBXPKMP NUCL_HUMAN Increases Expression [7]
Cofilin-1 (CFL1) OTT6D5MH COF1_HUMAN Increases Expression [7]
Myristoylated alanine-rich C-kinase substrate (MARCKS) OT7N056G MARCS_HUMAN Increases Expression [7]
Thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3) OTLB2WEU PRDX3_HUMAN Increases Expression [7]
Protein disulfide-isomerase A3 (PDIA3) OTHPQ0Q3 PDIA3_HUMAN Decreases Expression [7]
Serine hydroxymethyltransferase, mitochondrial (SHMT2) OT5NCAZN GLYM_HUMAN Increases Expression [7]
Prohibitin 1 (PHB1) OTZNXYS2 PHB1_HUMAN Increases Expression [7]
Stress-70 protein, mitochondrial (HSPA9) OT4TMVS9 GRP75_HUMAN Increases Expression [7]
Actin, cytoplasmic 1 (ACTB) OT1MCP2F ACTB_HUMAN Affects Expression [7]
Small ribosomal subunit protein RACK1 (RACK1) OTZBCQ1U RACK1_HUMAN Increases Expression [7]
Elongation factor 1-alpha 1 (EEF1A1) OT00THXS EF1A1_HUMAN Increases Expression [7]
Single-stranded DNA-binding protein, mitochondrial (SSBP1) OTH2PZWH SSBP_HUMAN Increases Expression [7]
Complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP) OTPYQX3K C1QBP_HUMAN Increases Expression [7]
Beta-actin-like protein 2 (ACTBL2) OTD6B81U ACTBL_HUMAN Decreases Expression [7]
5'-3' exonuclease PLD3 (PLD3) OTL07SP2 PLD3_HUMAN Affects Expression [7]
Septin-9 (SEPTIN9) OT1VMRFQ SEPT9_HUMAN Decreases Expression [7]
RuvB-like 1 (RUVBL1) OTWV19L7 RUVB1_HUMAN Increases Expression [7]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Expression [32]
Brain mitochondrial carrier protein 1 (SLC25A14) OT1ZQSKS UCP5_HUMAN Increases Expression [33]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Affects Binding [34]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Decreases Expression [35]
Insulin (INS) OTZ85PDU INS_HUMAN Increases Expression [36]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Phosphorylation [37]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [37]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [38]
D(1A) dopamine receptor (DRD1) OTLZPBT7 DRD1_HUMAN Increases Activity [39]
Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PCMT1) OTGYVSGU PIMT_HUMAN Decreases Expression [40]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [28]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [28]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [28]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [28]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Decreases Expression [28]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [28]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Metabolism [41]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Uptake [42]
Tyrosine 3-monooxygenase (TH) OT6ZORKP TY3H_HUMAN Increases Chemical Synthesis [43]
Amine oxidase A (MAOA) OT8NIWMQ AOFA_HUMAN Decreases Amination [23]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Metabolism [41]
Alpha-synuclein (SNCA) OTPWC1MR SYUA_HUMAN Increases Response To Substance [44]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [45]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [46]
Secretin (SCT) OTV3MLOO SECR_HUMAN Increases Metabolism [47]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [46]
GDP-mannose 4,6 dehydratase (GMDS) OTWV79YD GMDS_HUMAN Increases ADR [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 DOT(s)
Indication(s) of Clopidogrel
Disease Entry ICD 11 Status REF
Acute coronary syndrome BA41 Approved [4]
Atherosclerosis BD40 Approved [4]
Myocardial infarction BA41-BA43 Approved [4]
Thrombosis DB61-GB90 Approved [5]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 2 [6]
Intracranial embolism 8B22.1 Investigative [4]
Clopidogrel Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
P2Y purinoceptor 12 (P2RY12) TTZ1DT0 P2Y12_HUMAN Antagonist [48]
------------------------------------------------------------------------------------
Clopidogrel Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [49]
------------------------------------------------------------------------------------
Clopidogrel Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [50]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [51]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [52]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [52]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [53]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Clopidogrel Interacts with 26 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [55]
Cytochrome P450 2B6 (CYP2B6) OTOYO4S7 CP2B6_HUMAN Increases Expression [55]
Cytochrome P450 1A2 (CYP1A2) OTLLBX48 CP1A2_HUMAN Increases Oxidation [56]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Affects Response To Substance [57]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Expression [49]
P2Y purinoceptor 12 (P2RY12) OTX2W0WD P2Y12_HUMAN Affects Response To Substance [58]
Cytochrome P450 2C19 (CYP2C19) OTFMJYYE CP2CJ_HUMAN Increases ADR [59]
Stearoyl-CoA desaturase (SCD) OTB1073G SCD_HUMAN Decreases Expression [55]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [60]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [61]
Thrombospondin-1 (THBS1) OT0ECWK3 TSP1_HUMAN Increases Expression [60]
C-C motif chemokine 4 (CCL4) OT6B8P25 CCL4_HUMAN Increases Expression [62]
C-C motif chemokine 5 (CCL5) OTSCA5CK CCL5_HUMAN Increases Expression [62]
Brain-derived neurotrophic factor (BDNF) OTLGH7EW BDNF_HUMAN Decreases Secretion [63]
Phosphoenolpyruvate carboxykinase, cytosolic (PCK1) OTNWEJ5Y PCKGC_HUMAN Increases Expression [55]
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) OTJ6FM9F G6PC1_HUMAN Decreases Expression [55]
Tight junction protein ZO-1 (TJP1) OTBDCUPK ZO1_HUMAN Decreases Expression [64]
Nuclear receptor subfamily 1 group I member 3 (NR1I3) OTS3SGH7 NR1I3_HUMAN Affects Localization [55]
Occludin (OCLN) OTSUTVWL OCLN_HUMAN Decreases Expression [64]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [61]
Thyroid hormone-inducible hepatic protein (THRSP) OTKYE01L THRSP_HUMAN Increases Expression [55]
Proteinase-activated receptor 1 (F2R) OT4WVWBO PAR1_HUMAN Affects Response To Substance [65]
Serum paraoxonase/arylesterase 1 (PON1) OTD0Z2XO PON1_HUMAN Affects Response To Substance [66]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Metabolism [67]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Response To Substance [68]
Integrin beta-3 (ITGB3) OTWCK1K6 ITB3_HUMAN Decreases Response To Substance [69]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Dopamine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 940).
4 Clopidogrel FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7150).
6 Preventing Cardiac Complication of COVID-19 Disease With Early Acute Coronary Syndrome Therapy: A Randomised Controlled Trial. (C-19-ACS)
7 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
8 Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience. 2016 Oct 1;333:193-203. doi: 10.1016/j.neuroscience.2016.07.020. Epub 2016 Jul 20.
9 Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry. 2011 Sep;16(9):927-37, 881. doi: 10.1038/mp.2011.32. Epub 2011 Apr 19.
10 The Detection of Dopamine Gene Receptors (DRD1-DRD5) Expression on Human Peripheral Blood Lymphocytes by Real Time PCR. Iran J Allergy Asthma Immunol. 2004 Dec;3(4):169-74.
11 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
12 Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243-53.
13 SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med. 2013 Apr-Jun;34(2-3):360-72.
14 Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2253-E2262.
15 Characterization of VNTRs Within the Entire Region of SLC6A3 and Its Association with Hypertension. DNA Cell Biol. 2017 Mar;36(3):227-236.
16 Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics. 1998 Jun;8(3):251-8.
17 Pharmacogenetics of schizophrenia. Am J Med Genet. 2000 Spring;97(1):98-106.
18 Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):651-60.
19 Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32.
20 Molecular cloning, expression, and functional characterization of novel mouse sulfotransferases. Biochem Biophys Res Commun. 1998 Jun 29;247(3):681-6.
21 Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019 Jun 14;364(6445). pii: eaau6323.
22 Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. J Toxicol Sci. 2016 Feb;41(1):143-6.
23 Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine. Toxicol Lett. 2016 Jan 22;243:48-55.
24 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
25 Functional characterization of N-octyl 4-methylamphetamine variants and related bivalent compounds at the dopamine and serotonin transporters using Ca(2+) channels as sensors. Toxicol Appl Pharmacol. 2021 May 15;419:115513. doi: 10.1016/j.taap.2021.115513. Epub 2021 Mar 27.
26 The effect of rare human sequence variants on the function of vesicular monoamine transporter 2. Pharmacogenetics. 2004 Sep;14(9):587-94. doi: 10.1097/00008571-200409000-00003.
27 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
28 Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology. 2009 Jul;30(4):658-65. doi: 10.1016/j.neuro.2009.04.007. Epub 2009 May 4.
29 Inhibition of human glutathione S-transferases by dopamine, alpha-methyldopa and their 5-S-glutathionyl conjugates. Chem Biol Interact. 1994 Jan;90(1):87-99.
30 Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry. 2004 Apr;9(4):358-70.
31 Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening. Drug Metab Dispos. 2008 Jul;36(7):1322-31.
32 Induction of parkin expression in the presence of oxidative stress. Eur J Neurosci. 2006 Sep;24(5):1366-72. doi: 10.1111/j.1460-9568.2006.04998.x.
33 Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med. 2010 Sep 15;49(6):1023-35. doi: 10.1016/j.freeradbiomed.2010.06.017. Epub 2010 Jun 19.
34 Ligand binding and aggregation of pathogenic SOD1. Nat Commun. 2013;4:1758. doi: 10.1038/ncomms2750.
35 Dose-dependent separation of dopaminergic and adrenergic effects of epinine in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):429-37. doi: 10.1007/BF00172781.
36 Effect of drugs interacting with the dopaminergic receptors on glucose levels and insulin release in healthy and type 2 diabetic subjects. Am J Ther. 2008 Jul-Aug;15(4):397-402. doi: 10.1097/MJT.0b013e318160c353.
37 Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004 Aug 15;13(16):1745-54. doi: 10.1093/hmg/ddh180. Epub 2004 Jun 15.
38 Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med. 2007 Jun 30;39(3):376-84. doi: 10.1038/emm.2007.42.
39 Characterizing fucoxanthin as a selective dopamine D(3)/D(4) receptor agonist: Relevance to Parkinson's disease. Chem Biol Interact. 2019 Sep 1;310:108757. doi: 10.1016/j.cbi.2019.108757. Epub 2019 Jul 16.
40 Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience. 2014 May 16;267:263-76. doi: 10.1016/j.neuroscience.2014.03.001. Epub 2014 Mar 12.
41 Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun. 2000 Jan 7;267(1):80-4. doi: 10.1006/bbrc.1999.1935.
42 Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci. 2004 Mar 3;24(9):2212-25. doi: 10.1523/JNEUROSCI.4847-03.2004.
43 Expression of tyrosine hydroxylase increases the resistance of human neuroblastoma cells to oxidative insults. Toxicol Sci. 2010 Jan;113(1):150-7. doi: 10.1093/toxsci/kfp245. Epub 2009 Oct 8.
44 G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage. Neurochem Int. 2004 Oct;45(5):669-76. doi: 10.1016/j.neuint.2004.03.029.
45 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
46 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
47 Administration of secretin for autism alters dopamine metabolism in the central nervous system. Brain Dev. 2006 Mar;28(2):99-103. doi: 10.1016/j.braindev.2005.05.005. Epub 2005 Sep 15.
48 P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med. 2003 May;3(2):113-22.
49 Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006 Nov;80(5):486-501.
50 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
51 Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin Pharmacokinet. 2015 Feb;54(2):147-66.
52 Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther. 2007 May;81(5):735-41.
53 Clopidogrel pathway. Pharmacogenet Genomics. 2010 Jul;20(7):463-5.
54 Impact of the CYP2C19 gene polymorphism on clopidogrel personalized drug regimen and the clinical outcomes. Clin Lab. 2016 Sep 1;62(9):1773-1780.
55 Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Arch Toxicol. 2019 Aug;93(8):2247-2264. doi: 10.1007/s00204-019-02495-6. Epub 2019 Jul 16.
56 Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010 Jan;38(1):92-9. doi: 10.1124/dmd.109.029132.
57 Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ. 2006 Jun 6;174(12):1715-22. doi: 10.1503/cmaj.060664.
58 Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol. 2009 Apr 17;133(3):341-5. doi: 10.1016/j.ijcard.2007.12.118. Epub 2008 May 15.
59 Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013 Sep;94(3):317-23. doi: 10.1038/clpt.2013.105. Epub 2013 May 22.
60 Angiogenesis inhibitor SR 25989 upregulates thrombospondin-1 expression in human vascular endothelial cells and foreskin fibroblasts. Biol Cell. 1997 Jul;89(4):295-307.
61 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
62 Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: results of a double-blind placebo-controlled study. J Thromb Haemost. 2006 Oct;4(10):2140-7. doi: 10.1111/j.1538-7836.2006.02131.x. Epub 2006 Jul 17.
63 Differential effect of clopidogrel and aspirin on the release of BDNF from platelets. J Neuroimmunol. 2011 Sep 15;238(1-2):104-6. doi: 10.1016/j.jneuroim.2011.06.015. Epub 2011 Jul 31.
64 Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation. Toxicology. 2013 Feb 8;304:41-8. doi: 10.1016/j.tox.2012.11.020. Epub 2012 Dec 7.
65 PAR-1 genotype influences platelet aggregation and procoagulant responses in patients with coronary artery disease prior to and during clopidogrel therapy. Platelets. 2005 Sep;16(6):340-5. doi: 10.1080/00207230500120294.
66 Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med. 2011 Jan;17(1):110-6. doi: 10.1038/nm.2281. Epub 2010 Dec 19.
67 Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007 Dec;5(12):2429-36. doi: 10.1111/j.1538-7836.2007.02775.x. Epub 2007 Sep 26.
68 Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol Pharmacol. 2007 Sep;72(3):686-94. doi: 10.1124/mol.107.036889. Epub 2007 May 30.
69 High loading dose of clopidogrel is unable to satisfactorily inhibit platelet reactivity in patients with glycoprotein IIIA gene polymorphism: a genetic substudy of PRAGUE-8 trial. Blood Coagul Fibrinolysis. 2009 Jun;20(4):257-62. doi: 10.1097/mbc.0b013e328325455b.