General Information of Disease (ID: DISPGX6H)

Disease Name Primary ciliary dyskinesia 1
Synonyms
PCD; ciliary dyskinesia, primary, 1, with or without situs inversus; Kartagener syndrome; ciliary dyskinesia, primary, 1; Siewert syndrome; dextrocardia, bronchiectasis, and sinusitis; immotile cilia syndrome; Polynesian bronchiectasis; primary ciliary dyskinesia type 1; primary ciliary dyskinesia 1 with or without situs inversus; primary ciliary dyskinesia 1; DNAI1 primary ciliary dyskinesia; ciliary dyskinesia, primary, type 1; CILD1; primary ciliary dyskinesia caused by mutation in DNAI1
Definition Any primary ciliary dyskinesia in which the cause of the disease is a mutation in the DNAI1 gene.
Disease Hierarchy
DISOBC7V: Primary ciliary dyskinesia
DISPGX6H: Primary ciliary dyskinesia 1
Disease Identifiers
MONDO ID
MONDO_0009484
MESH ID
D007619
UMLS CUI
C4551906
OMIM ID
244400
MedGen ID
1646059
Orphanet ID
98861

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 1 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
STK36 TTX5KEQ Disputed GermlineCausalMutation [1]
------------------------------------------------------------------------------------
This Disease Is Related to 29 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CCNO OT68CH0B moderate GermlineCausalMutation [2]
RSPH1 OT3MR73R moderate CausalMutation [3]
CCDC103 OTWGXYEF Strong GermlineCausalMutation [4]
CCDC40 OTFHEUUN Strong Biomarker [5]
CCDC65 OTLK1420 Strong GermlineCausalMutation [6]
CFAP221 OTUVNCVZ Strong GermlineCausalMutation [7]
CFAP298 OTTDRT2N Strong GermlineCausalMutation [6]
CFAP300 OTJWZZIO Strong GermlineCausalMutation [8]
DNAAF1 OTYLQLHO Strong CausalMutation [9]
DNAAF3 OT3OHO0O Strong Biomarker [10]
DNAAF4 OTVDYBJE Strong Biomarker [11]
DNAAF5 OTN0CT52 Strong GermlineCausalMutation [12]
DNAH1 OTDZ26FJ Strong GermlineCausalMutation [13]
DNAH5 OTC21RUS Strong CausalMutation [14]
DNAH9 OTI2QIZQ Strong GermlineCausalMutation [15]
DNAJB13 OT264P6X Strong GermlineCausalMutation [16]
DNAL1 OTU5AWIS Strong CausalMutation [17]
DRC1 OT7WLL0X Strong Autosomal recessive [18]
FOXJ1 OT7LLBZ7 Strong GermlineCausalMutation [19]
GAS2L2 OTV0H6MJ Strong GermlineCausalMutation [20]
GAS8 OT8KT2AK Strong GermlineCausalMutation [21]
HYDIN OTY88F5F Strong GermlineCausalMutation [22]
LRRC56 OTDXNK54 Strong GermlineCausalMutation [23]
MCIDAS OTK1JVAH Strong GermlineCausalMutation [24]
RSPH3 OTDPCNYN Strong GermlineCausalMutation [25]
RSPH4A OTNDPGEE Strong CausalMutation [2]
SPAG1 OT29JZKW Strong GermlineCausalMutation [26]
SPEF2 OTO04K1T Strong GermlineCausalMutation [27]
DNAI1 OTF6C65Q Definitive Autosomal recessive [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 DOT(s)

References

1 Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat. 2017 Aug;38(8):964-969. doi: 10.1002/humu.23261. Epub 2017 Jun 15.
2 Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population.Eur J Hum Genet. 2015 Feb;23(2):210-7. doi: 10.1038/ejhg.2014.79. Epub 2014 May 14.
3 Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.Am J Respir Crit Care Med. 2014 Mar 15;189(6):707-17. doi: 10.1164/rccm.201311-2047OC.
4 CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012 May 13;44(6):714-9. doi: 10.1038/ng.2277.
5 The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011 Jan;43(1):79-84. doi: 10.1038/ng.727. Epub 2010 Dec 5.
6 Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. Am J Hum Genet. 2013 Oct 3;93(4):672-86. doi: 10.1016/j.ajhg.2013.08.015.
7 Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet. 2020 Jan;65(2):175-180. doi: 10.1038/s10038-019-0686-1. Epub 2019 Oct 21.
8 C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia. Am J Hum Genet. 2018 May 3;102(5):956-972. doi: 10.1016/j.ajhg.2018.03.024.
9 Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet. 2009 Dec;85(6):883-9. doi: 10.1016/j.ajhg.2009.10.018.
10 Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012 Mar 4;44(4):381-9, S1-2. doi: 10.1038/ng.1106.
11 DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 2013 Sep;45(9):995-1003. doi: 10.1038/ng.2707. Epub 2013 Jul 21.
12 Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012 Oct 5;91(4):685-93. doi: 10.1016/j.ajhg.2012.08.022.
13 Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet. 2015 Mar 17;16:14. doi: 10.1186/s12881-015-0162-5.
14 Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities.J Pediatr. 2013 Aug;163(2):383-7. doi: 10.1016/j.jpeds.2013.01.061. Epub 2013 Mar 7.
15 Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am J Hum Genet. 2018 Dec 6;103(6):995-1008. doi: 10.1016/j.ajhg.2018.10.020. Epub 2018 Nov 21.
16 Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet. 2016 Aug 4;99(2):489-500. doi: 10.1016/j.ajhg.2016.06.022.
17 Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011 May 13;88(5):599-607. doi: 10.1016/j.ajhg.2011.03.018. Epub 2011 Apr 14.
18 The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013 Mar;45(3):262-8. doi: 10.1038/ng.2533. Epub 2013 Jan 27.
19 De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am J Hum Genet. 2019 Nov 7;105(5):1030-1039. doi: 10.1016/j.ajhg.2019.09.022. Epub 2019 Oct 17.
20 A biallelic mutation links MYORG to autosomal-recessive primary familial brain calcification. Brain. 2019 Feb 1;142(2):e4. doi: 10.1093/brain/awy343.
21 Loss-of-Function GAS8 Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. Am J Hum Genet. 2015 Oct 1;97(4):546-54. doi: 10.1016/j.ajhg.2015.08.012. Epub 2015 Sep 17.
22 Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012 Oct 5;91(4):672-84. doi: 10.1016/j.ajhg.2012.08.016. Epub 2012 Sep 27.
23 Biallelic Mutations in LRRC56, Encoding a Protein Associated with Intraflagellar Transport, Cause Mucociliary Clearance and Laterality Defects. Am J Hum Genet. 2018 Nov 1;103(5):727-739. doi: 10.1016/j.ajhg.2018.10.003.
24 MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 2014 Jul 22;5:4418. doi: 10.1038/ncomms5418.
25 RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am J Hum Genet. 2015 Jul 2;97(1):153-62. doi: 10.1016/j.ajhg.2015.05.004. Epub 2015 Jun 11.
26 Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013 Oct 3;93(4):711-20. doi: 10.1016/j.ajhg.2013.07.025. Epub 2013 Sep 19.
27 SPEF2- and HYDIN-Mutant Cilia Lack the Central Pair-associated Protein SPEF2, Aiding Primary Ciliary Dyskinesia Diagnostics. Am J Respir Cell Mol Biol. 2020 Mar;62(3):382-396. doi: 10.1165/rcmb.2019-0086OC.
28 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.