General Information of Drug Off-Target (DOT) (ID: OT09PIFE)

DOT Name Mitochondrial basic amino acids transporter (SLC25A29)
Synonyms Carnitine/acylcarnitine translocase-like; CACT-like; Mitochondrial carnitine/acylcarnitine carrier protein CACL; Mitochondrial ornithine transporter 3; Solute carrier family 25 member 29
Gene Name SLC25A29
UniProt ID
S2529_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00153
Sequence
MALDFLAGCAGGVAGVLVGHPFDTVKVRLQVQSVEKPQYRGTLHCFKSIIKQESVLGLYK
GLGSPLMGLTFINALVFGVQGNTLRALGHDSPLNQFLAGAAAGAIQCVICCPMELAKTRL
QLQDAGPARTYKGSLDCLAQIYGHEGLRGVNRGMVSTLLRETPSFGVYFLTYDALTRALG
CEPGDRLLVPKLLLAGGTSGIVSWLSTYPVDVVKSRLQADGLRGAPRYRGILDCVHQSYR
AEGWRVFTRGLASTLLRAFPVNAATFATVTVVLTYARGEEAGPEGEAVPAAPAGPALAQP
SSL
Function
Mitochondrial transporter of arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Does not transport carnitine nor acylcarnitines. Functions by both counter-exchange and uniport mechanisms. Plays a physiological role in the import of basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.
KEGG Pathway
Thermogenesis (hsa04714 )
Reactome Pathway
Amino acid transport across the plasma membrane (R-HSA-352230 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Mitochondrial basic amino acids transporter (SLC25A29). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Mitochondrial basic amino acids transporter (SLC25A29). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Mitochondrial basic amino acids transporter (SLC25A29). [9]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [3]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [6]
Progesterone DMUY35B Approved Progesterone decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [7]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [13]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [14]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Mitochondrial basic amino acids transporter (SLC25A29). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
7 Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011 Jul;26(7):1813-25.
8 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
11 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
15 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.