General Information of Drug Off-Target (DOT) (ID: OT0RZ6TD)

DOT Name Large ribosomal subunit protein mL50 (MRPL50)
Synonyms 39S ribosomal protein L50, mitochondrial; L50mt; MRP-L50
Gene Name MRPL50
UniProt ID
RM50_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3J7Y ; 3J9M ; 5OOL ; 5OOM ; 6I9R ; 6NU2 ; 6NU3 ; 6VLZ ; 6VMI ; 6ZM5 ; 6ZM6 ; 6ZS9 ; 6ZSA ; 6ZSB ; 6ZSC ; 6ZSD ; 6ZSE ; 6ZSG ; 7A5F ; 7A5G ; 7A5H ; 7A5I ; 7A5J ; 7A5K ; 7L08 ; 7L20 ; 7O9K ; 7O9M ; 7ODR ; 7ODS ; 7ODT ; 7OF0 ; 7OF2 ; 7OF3 ; 7OF4 ; 7OF5 ; 7OF6 ; 7OF7 ; 7OG4 ; 7OI6 ; 7OI7 ; 7OI8 ; 7OI9 ; 7OIA ; 7OIB ; 7OIC ; 7OID ; 7OIE ; 7PD3 ; 7PO4 ; 7QH6 ; 7QH7 ; 7QI4 ; 7QI5 ; 7QI6 ; 8ANY ; 8OIR ; 8OIT
Pfam ID
PF10501
Sequence
MAARSVSGITRRVFMWTVSGTPCREFWSRFRKEKEPVVVETVEEKKEPILVCPPLRSRAY
TPPEDLQSRLESYVKEVFGSSLPSNWQDISLEDSRLKFNLLAHLADDLGHVVPNSRLHQM
CRVRDVLDFYNVPIQDRSKFDELSASNLPPNLKITWSY
Reactome Pathway
Mitochondrial translation elongation (R-HSA-5389840 )
Mitochondrial translation termination (R-HSA-5419276 )
Mitochondrial translation initiation (R-HSA-5368286 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Large ribosomal subunit protein mL50 (MRPL50). [1]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [6]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Large ribosomal subunit protein mL50 (MRPL50). [7]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [11]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [12]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Large ribosomal subunit protein mL50 (MRPL50). [13]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Large ribosomal subunit protein mL50 (MRPL50). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
14 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.