General Information of Drug Off-Target (DOT) (ID: OT1SX3LS)

DOT Name Proline and serine-rich protein 2 (PROSER2)
Gene Name PROSER2
Related Disease
Breast cancer ( )
Breast carcinoma ( )
UniProt ID
PRSR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15385
Sequence
MPVTHRKSDASDMNSDTSPSCRLRAFSRGGSLESRSSSSRSRSFTLDDESLKYLTHEEKD
VLLFFEETIDSLDEDFEEPVLCDGGVCCLCSPSLEESTSSPSEPEDVIDLVQPAPGAGEA
EGLPEGTQAAGPAPAGKEHRKQDAETPPPPDPPAPETLLAPPPLPSTPDPPRRELRAPSP
PVEHPRLLRSVPTPLVMAQKISERMAGNEALSPTSPFREGRPGEWRTPAARGPRSGDPGP
GPSHPAQPKAPRFPSNIIVTNGAAREPRRTLSRAAVSVQERRAQVLATIHGHAGAFPAAG
DAGEGAPGGGSSPERVARGRGLPGPAESLRAGGQAPRGPALANGFPSAHEALKSAPSSFA
PAGKSLCFRPGPALPSTRARQSFPGPRQPNGAQDWRRADSLPRPQGITVQFAGRGSSEEA
RREALRKLGLLRESS

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Limited Altered Expression [1]
Breast carcinoma DIS2UE88 Limited Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Proline and serine-rich protein 2 (PROSER2). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Proline and serine-rich protein 2 (PROSER2). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Proline and serine-rich protein 2 (PROSER2). [14]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Proline and serine-rich protein 2 (PROSER2). [14]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Proline and serine-rich protein 2 (PROSER2). [16]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Proline and serine-rich protein 2 (PROSER2). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Proline and serine-rich protein 2 (PROSER2). [4]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Proline and serine-rich protein 2 (PROSER2). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Proline and serine-rich protein 2 (PROSER2). [6]
Testosterone DM7HUNW Approved Testosterone increases the expression of Proline and serine-rich protein 2 (PROSER2). [6]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Proline and serine-rich protein 2 (PROSER2). [7]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Proline and serine-rich protein 2 (PROSER2). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Proline and serine-rich protein 2 (PROSER2). [9]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Proline and serine-rich protein 2 (PROSER2). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Proline and serine-rich protein 2 (PROSER2). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Proline and serine-rich protein 2 (PROSER2). [13]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Proline and serine-rich protein 2 (PROSER2). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 A lymph node metastasis-related protein-coding genes combining with long noncoding RNA signature for breast cancer survival prediction.J Cell Physiol. 2019 Nov;234(11):20036-20045. doi: 10.1002/jcp.28600. Epub 2019 Apr 4.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
6 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
7 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
16 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.