General Information of Drug Off-Target (DOT) (ID: OT2ZV0WI)

DOT Name Protein FAM135A (FAM135A)
Gene Name FAM135A
UniProt ID
F135A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF12394 ; PF05057
Sequence
MTEVQAMVEFSVELNKFYNVDLFQRGFYQIRASMKIPSRIPHRVEASLLHATGMTLAFPA
SVHDSLICSKTFQILYKNEEVVLNDVMIFKVKMLLDERKIEETLEEMNFLLSLDLHFTDG
DYSADDLNALQLISSRTLKLHFSPHRGLHHHVNVMFDYFHLSVVSVTVHASLVALHQPLI
SFPRPVKTTWLNRNAPAQNKDSVIPTLESVVFGINYTKQLSPDGCSFIIADSFLHHAYRF
HYTLCATLLLAFKGLHSYFITVTEEIPSCQKLELEEMDVEARLTELCEEVKKIENPDELA
ELINMNLAQLCSLLMALWGQFLEVITLHEELRILLAQEHHTLRVRRFSEAFFCFEHPREA
AIAYQELHAQSHLQMCTAIKNTSFCSSLPPLPIECSELDGDLNSLPIIFEDRYLDSVTED
LDAPWMGIQNLQRSESSKMDKYETEESSVAGLSSPELKVRPAGASSIWYTEGEKQLTKSL
KGKNEESNKSKVKVTKLMKTMKSENTKKLIKQNSKDSVVLVGYKCLKSTASNDLIKCFEG
NPSHSQKEGLDPTICGYNFDPKTYMRQTSQKEASCLPTNTERTEQKSPDIENVQPDQFDP
LNSGNLNLCANLSISGKLDISQDDSEITQMEHNLASRRSSDDCHDHQTTPSLGVRTIEIK
PSNKDPFSGENITVKLGPWTELRQEEILVDNLLPNFESLESNGKSKSIEITFEKEALQEA
KCLSIGESLTKLRSNLPAPSTKEYHVVVSGDTIKLPDISATYASSRFSDSGVESEPSSFA
THPNTDLVFETVQGQGPCNSERLFPQLLMKPDYNVKFSLGNHCTESTSAISEIQSSLTSI
NSLPSDDELSPDENSKKSVVPECHLNDSKTVLNLGTTDLPKCDDTKKSSITLQQQSVVFS
GNLDNETVAIHSLNSSIKDPLQFVFSDEETSSDVKSSCSSKPNLDTMCKGFQSPDKSNNS
TGTAITLNSKLICLGTPCVISGSISSNTDVSEDRTMKKNSDVLNLTQMYSEIPTVESETH
LGTSDPFSASTDIVKQGLVENYFGSQSSTDISDTCAVSYSNALSPQKETSEKEISNLQQE
QDKEDEEEEQDQQMVQNGYYEETDYSALDGTINAHYTSRDELMEERLTKSEKINSDYLRD
GINMPTVCTSGCLSFPSAPRESPCNVKYSSKSKFDAITKQPSSTSYNFTSSISWYESSPK
PQIQAFLQAKEELKLLKLPGFMYSEVPLLASSVPYFSVEEEDGSEDGVHLIVCVHGLDGN
SADLRLVKTYIELGLPGGRIDFLMSERNQNDTFADFDSMTDRLLDEIIQYIQIYSLTVSK
ISFIGHSLGNLIIRSVLTRPRFKYYLNKLHTFLSLSGPHLGTLYNSSALVNTGLWFMQKW
KKSGSLLQLTCRDHSDPRQTFLYKLSNKAGLHYFKNVVLVGSLQDRYVPYHSARIEMCKT
ALKDKQSGQIYSEMIHNLLRPVLQSKDCNLVRYNVINALPNTADSLIGRAAHIAVLDSEI
FLEKFFLVAALKYFQ
Tissue Specificity Ubiquitous.
Reactome Pathway
RND1 GTPase cycle (R-HSA-9696273 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein FAM135A (FAM135A). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein FAM135A (FAM135A). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protein FAM135A (FAM135A). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein FAM135A (FAM135A). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein FAM135A (FAM135A). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Protein FAM135A (FAM135A). [6]
Vorinostat DMWMPD4 Approved Vorinostat affects the expression of Protein FAM135A (FAM135A). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Protein FAM135A (FAM135A). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Protein FAM135A (FAM135A). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Protein FAM135A (FAM135A). [11]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protein FAM135A (FAM135A). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Protein FAM135A (FAM135A). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Protein FAM135A (FAM135A). [10]
------------------------------------------------------------------------------------

References

1 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
11 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.