General Information of Drug Off-Target (DOT) (ID: OT3KETR8)

DOT Name Glucosamine-6-phosphate isomerase 2 (GNPDA2)
Synonyms EC 3.5.99.6; Glucosamine-6-phosphate deaminase 2; GNPDA 2; GlcN6P deaminase 2; Glucosamine-6-phosphate isomerase SB52
Gene Name GNPDA2
UniProt ID
GNPI2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.5.99.6
Pfam ID
PF01182
Sequence
MRLVILDNYDLASEWAAKYICNRIIQFKPGQDRYFTLGLPTGSTPLGCYKKLIEYHKNGH
LSFKYVKTFNMDEYVGLPRNHPESYHSYMWNNFFKHIDIDPNNAHILDGNAADLQAECDA
FENKIKEAGGIDLFVGGIGPDGHIAFNEPGSSLVSRTRLKTLAMDTILANAKYFDGDLSK
VPTMALTVGVGTVMDAREVMILITGAHKAFALYKAIEEGVNHMWTVSAFQQHPRTIFVCD
EDATLELRVKTVKYFKGLMHVHNKLVDPLFSMKDGN
Function
Catalyzes the reversible conversion of alpha-D-glucosamine 6-phosphate (GlcN-6P) into beta-D-fructose 6-phosphate (Fru-6P) and ammonium ion, a regulatory reaction step in de novo uridine diphosphate-N-acetyl-alpha-D-glucosamine (UDP-GlcNAc) biosynthesis via hexosamine pathway. Deamination is coupled to aldo-keto isomerization mediating the metabolic flux from UDP-GlcNAc toward Fru-6P. At high ammonium level can drive amination and isomerization of Fru-6P toward hexosamines and UDP-GlcNAc synthesis. Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and their effects on hyaluronan synthesis that occur during tissue remodeling.
Tissue Specificity Ubiquitous, with highest expression detected in testis, ovary, placenta, and heart.
KEGG Pathway
Amino sugar and nucleotide sugar metabolism (hsa00520 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Glycolysis (R-HSA-70171 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [6]
Marinol DM70IK5 Approved Marinol decreases the methylation of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [13]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [7]
Clorgyline DMCEUJD Approved Clorgyline increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Glucosamine-6-phosphate isomerase 2 (GNPDA2). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Epigenetic activation of O-linked -N-acetylglucosamine transferase overrides the differentiation blockage in acute leukemia. EBioMedicine. 2020 Apr;54:102678. doi: 10.1016/j.ebiom.2020.102678. Epub 2020 Apr 6.
9 Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009 Aug 20;2:55. doi: 10.1186/1755-8794-2-55.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.