General Information of Drug Off-Target (DOT) (ID: OT5C4VVU)

DOT Name Nucleotidyltransferase MB21D2 (MB21D2)
Synonyms EC 2.7.7.-; Mab-21 domain-containing protein 2; hMB21D2
Gene Name MB21D2
Related Disease
Autoimmune disease ( )
Autoimmune disease, susceptibility to, 6 ( )
Hypothyroidism ( )
STAT3-related early-onset multisystem autoimmune disease ( )
UniProt ID
M21D2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7LT1
EC Number
2.7.7.-
Pfam ID
PF03281 ; PF20266
Sequence
MKMAAPTANKAASLGCNNKPAFPELDFRSGARVEELNKLIQEFTKHDQREYDDQRALEIH
TAKDFIFSMLGMVQKLDQKLPVANEYLLLSGGVREGVVDLDLDELNVYARGTDYDMDFTL
LVPALKLHDRNQPVTLDMRHSALCHSWLSLRLFDEGTISKWKDCCTIVDHINGATNYFFS
PTKVADWFYDSISIVLSEIQKKPQRGMPKVEKVEKNGTIISIILGVGSSRMLYDIVPVVS
FKGWPAVAQSWLMENHFWDGKITEEEVISGFYLVPACSYKGKKDNEWRLSFARSEVQLKK
CISSSLMQAYQACKAIIIKLLSRPKAISPYHLRSMMLWACDRLPANYLAQEDYAAHFLLG
LIDDLQHCLVNKMCPNYFIPQCNMLEHLSEETVMLHARKLSSVRSDPAEHLRTAIEHVKA
ANRLTLELQRRGSTTSIPSPQSDGGDPNQPDDRLAKKLQQLVTENPGKSISVFINPDDVT
RPHFRIDDKFF
Function Probable nucleotidyltransferase that catalyzes the formation of cyclic dinucleotide second messenger in response to some unknown stimulus.

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autoimmune disease DISORMTM Strong Genetic Variation [1]
Autoimmune disease, susceptibility to, 6 DISHNUXI Strong Genetic Variation [1]
Hypothyroidism DISR0H6D Strong Genetic Variation [1]
STAT3-related early-onset multisystem autoimmune disease DISAXTN7 Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Nucleotidyltransferase MB21D2 (MB21D2). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [4]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [5]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [6]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [3]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [9]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Nucleotidyltransferase MB21D2 (MB21D2). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Nucleotidyltransferase MB21D2 (MB21D2). [7]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Nucleotidyltransferase MB21D2 (MB21D2). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Nucleotidyltransferase MB21D2 (MB21D2). [7]
------------------------------------------------------------------------------------

References

1 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
2 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
7 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
11 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.