General Information of Drug Off-Target (DOT) (ID: OT5U4CFD)

DOT Name Sodium-dependent phosphate transport protein 3 (SLC17A2)
Synonyms Na(+)/PI cotransporter 3; Sodium/phosphate cotransporter 3; Solute carrier family 17 member 2
Gene Name SLC17A2
UniProt ID
NPT3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MDGKPATRKGPDFCSLRYGLALIMHFSNFTMITQRVSLSIAIIAMVNTTQQQGLSNASTE
GPVADAFNNSSISIKEFDTKASVYQWSPETQGIIFSSINYGIILTLIPSGYLAGIFGAKK
MLGAGLLISSLLTLFTPLAADFGVILVIMVRTVQGMAQGMAWTGQFTIWAKWAPPLERSK
LTTIAGSGSAFGSFIILCVGGLISQALSWPFIFYIFGSTGCVCCLLWFTVIYDDPMHHPC
ISVREKEHILSSLAQQPSSPGRAVPIKAMVTCLPLWAIFLGFFSHFWLCTIILTYLPTYI
STLLHVNIRDSGVLSSLPFIAAASCTILGGQLADFLLSRNLLRLITVRKLFSSLGLLLPS
ICAVALPFVASSYVITIILLILIPGTSNLCDSGFIINTLDIAPRYASFLMGISRGFGLIA
GIISSTATGFLISQVGPVY
Function
Acts as a membrane potential-dependent organic anion transporter, the transport requires a low concentration of chloride ions. Mediates chloride-dependent transport of urate. Can actively transport inorganic phosphate into cells via Na(+) cotransport.
Tissue Specificity Expressed in the small intestine, kidney, spleen and testis. Not detected in fetal brain, bone marrow, and mammary gland.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Sodium-dependent phosphate transport protein 3 (SLC17A2). [1]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Sodium-dependent phosphate transport protein 3 (SLC17A2). [10]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [2]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [6]
Menadione DMSJDTY Approved Menadione affects the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [6]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [7]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [8]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [2]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [9]
Mivebresib DMCPF90 Phase 1 Mivebresib decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [9]
KOJIC ACID DMP84CS Investigative KOJIC ACID decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [11]
Resorcinol DMM37C0 Investigative Resorcinol decreases the expression of Sodium-dependent phosphate transport protein 3 (SLC17A2). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
7 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
8 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
9 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
12 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.