General Information of Drug Off-Target (DOT) (ID: OT6KFNMS)

DOT Name Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C)
Synonyms Calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle; Voltage-gated calcium channel subunit alpha Cav1.2
Gene Name CACNA1C
Related Disease
Timothy syndrome ( )
Neurodevelopmental disorder with hypotonia, language delay, and skeletal defects with or without seizures ( )
Long QT syndrome ( )
Long qt syndrome 8 ( )
Brugada syndrome ( )
Brugada syndrome 3 ( )
Short QT syndrome ( )
Intellectual disability ( )
UniProt ID
CAC1C_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1T0J; 2BE6; 2F3Y; 2F3Z; 2LQC; 3G43; 3OXQ; 5V2P; 5V2Q; 6C0A; 6DAD; 6DAE; 6DAF; 6U39; 6U3A; 6U3B; 6U3D; 7L8V; 8EOG; 8EOI; 8FD7; 8WE6; 8WE7; 8WE8; 8WE9; 8WEA
Pfam ID
PF08763 ; PF16885 ; PF16905 ; PF00520
Sequence
MVNENTRMYIPEENHQGSNYGSPRPAHANMNANAAAGLAPEHIPTPGAALSWQAAIDAAR
QAKLMGSAGNATISTVSSTQRKRQQYGKPKKQGSTTATRPPRALLCLTLKNPIRRACISI
VEWKPFEIIILLTIFANCVALAIYIPFPEDDSNATNSNLERVEYLFLIIFTVEAFLKVIA
YGLLFHPNAYLRNGWNLLDFIIVVVGLFSAILEQATKADGANALGGKGAGFDVKALRAFR
VLRPLRLVSGVPSLQVVLNSIIKAMVPLLHIALLVLFVIIIYAIIGLELFMGKMHKTCYN
QEGIADVPAEDDPSPCALETGHGRQCQNGTVCKPGWDGPKHGITNFDNFAFAMLTVFQCI
TMEGWTDVLYWVNDAVGRDWPWIYFVTLIIIGSFFVLNLVLGVLSGEFSKEREKAKARGD
FQKLREKQQLEEDLKGYLDWITQAEDIDPENEDEGMDEEKPRNMSMPTSETESVNTENVA
GGDIEGENCGARLAHRISKSKFSRYWRRWNRFCRRKCRAAVKSNVFYWLVIFLVFLNTLT
IASEHYNQPNWLTEVQDTANKALLALFTAEMLLKMYSLGLQAYFVSLFNRFDCFVVCGGI
LETILVETKIMSPLGISVLRCVRLLRIFKITRYWNSLSNLVASLLNSVRSIASLLLLLFL
FIIIFSLLGMQLFGGKFNFDEMQTRRSTFDNFPQSLLTVFQILTGEDWNSVMYDGIMAYG
GPSFPGMLVCIYFIILFICGNYILLNVFLAIAVDNLADAESLTSAQKEEEEEKERKKLAR
TASPEKKQELVEKPAVGESKEEKIELKSITADGESPPATKINMDDLQPNENEDKSPYPNP
ETTGEEDEEEPEMPVGPRPRPLSELHLKEKAVPMPEASAFFIFSSNNRFRLQCHRIVNDT
IFTNLILFFILLSSISLAAEDPVQHTSFRNHILFYFDIVFTTIFTIEIALKILGNADYVF
TSIFTLEIILKMTAYGAFLHKGSFCRNYFNILDLLVVSVSLISFGIQSSAINVVKILRVL
RVLRPLRAINRAKGLKHVVQCVFVAIRTIGNIVIVTTLLQFMFACIGVQLFKGKLYTCSD
SSKQTEAECKGNYITYKDGEVDHPIIQPRSWENSKFDFDNVLAAMMALFTVSTFEGWPEL
LYRSIDSHTEDKGPIYNYRVEISIFFIIYIIIIAFFMMNIFVGFVIVTFQEQGEQEYKNC
ELDKNQRQCVEYALKARPLRRYIPKNQHQYKVWYVVNSTYFEYLMFVLILLNTICLAMQH
YGQSCLFKIAMNILNMLFTGLFTVEMILKLIAFKPKGYFSDPWNVFDFLIVIGSIIDVIL
SETNHYFCDAWNTFDALIVVGSIVDIAITEVNPAEHTQCSPSMNAEENSRISITFFRLFR
VMRLVKLLSRGEGIRTLLWTFIKSFQALPYVALLIVMLFFIYAVIGMQVFGKIALNDTTE
INRNNNFQTFPQAVLLLFRCATGEAWQDIMLACMPGKKCAPESEPSNSTEGETPCGSSFA
VFYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPHHLDEFKRIWAEYDPEAKGRI
KHLDVVTLLRRIQPPLGFGKLCPHRVACKRLVSMNMPLNSDGTVMFNATLFALVRTALRI
KTEGNLEQANEELRAIIKKIWKRTSMKLLDQVVPPAGDDEVTVGKFYATFLIQEYFRKFK
KRKEQGLVGKPSQRNALSLQAGLRTLHDIGPEIRRAISGDLTAEEELDKAMKEAVSAASE
DDIFRRAGGLFGNHVSYYQSDGRSAFPQTFTTQRPLHINKAGSSQGDTESPSHEKLVDST
FTPSSYSSTGSNANINNANNTALGRLPRPAGYPSTVSTVEGHGPPLSPAIRVQEVAWKLS
SNRERHVPMCEDLELRRDSGSAGTQAHCLLLRKANPSRCHSRESQAAMAGQEETSQDETY
EVKMNHDTEACSEPSLLSTEMLSYQDDENRQLTLPEEDKRDIRQSPKRGFLRSASLGRRA
SFHLECLKRQKDRGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPASFPRPFATPPA
TPGSRGWPPQPVPTLRLEGVESSEKLNSSFPSIHCGSWAETTPGGGGSSAARRVRPVSLM
VPSQAGAPGRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDMTIEEMESA
ADNILSGGAPQSPNGALLPFVNCRDAGQDRAGGEEDAGCVRARGRPSEEELQDSRVYVSS
L
Function
Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm. Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm. Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via its role in the contraction of arterial smooth muscle cells. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group (Probable); (Microbial infection) Acts as a receptor for Influenzavirus. May play a critical role in allowing virus entry when sialylated and expressed on lung tissues.
Tissue Specificity
Detected throughout the brain, including hippocampus, cerebellum and amygdala, throughout the heart and vascular system, including ductus arteriosus, in urinary bladder, and in retina and sclera in the eye . Expressed in brain, heart, jejunum, ovary, pancreatic beta-cells and vascular smooth muscle. Overall expression is reduced in atherosclerotic vascular smooth muscle.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Calcium sig.ling pathway (hsa04020 )
cGMP-PKG sig.ling pathway (hsa04022 )
cAMP sig.ling pathway (hsa04024 )
Cardiac muscle contraction (hsa04260 )
Adrenergic sig.ling in cardiomyocytes (hsa04261 )
Vascular smooth muscle contraction (hsa04270 )
Circadian entrainment (hsa04713 )
Long-term potentiation (hsa04720 )
Retrograde endocan.binoid sig.ling (hsa04723 )
Glutamatergic sy.pse (hsa04724 )
Cholinergic sy.pse (hsa04725 )
Serotonergic sy.pse (hsa04726 )
GABAergic sy.pse (hsa04727 )
Dopaminergic sy.pse (hsa04728 )
Taste transduction (hsa04742 )
Insulin secretion (hsa04911 )
GnRH sig.ling pathway (hsa04912 )
Oxytocin sig.ling pathway (hsa04921 )
Renin secretion (hsa04924 )
Aldosterone synthesis and secretion (hsa04925 )
Cortisol synthesis and secretion (hsa04927 )
GnRH secretion (hsa04929 )
Type II diabetes mellitus (hsa04930 )
Cushing syndrome (hsa04934 )
Growth hormone synthesis, secretion and action (hsa04935 )
Alzheimer disease (hsa05010 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Amphetamine addiction (hsa05031 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Hypertrophic cardiomyopathy (hsa05410 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Dilated cardiomyopathy (hsa05414 )
Reactome Pathway
NCAM1 interactions (R-HSA-419037 )
Regulation of insulin secretion (R-HSA-422356 )
Phase 0 - rapid depolarisation (R-HSA-5576892 )
Phase 2 - plateau phase (R-HSA-5576893 )
Adrenaline,noradrenaline inhibits insulin secretion (R-HSA-400042 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Timothy syndrome DISBXBZP Definitive Autosomal dominant [1]
Neurodevelopmental disorder with hypotonia, language delay, and skeletal defects with or without seizures DISLP2XI Strong Autosomal dominant [2]
Long QT syndrome DISMKWS3 Moderate Autosomal dominant [3]
Long qt syndrome 8 DIS5FEOW Moderate Autosomal dominant [2]
Brugada syndrome DISSGN0E Supportive Autosomal dominant [4]
Brugada syndrome 3 DISSSLRF Disputed Autosomal dominant [2]
Short QT syndrome DISOI9X1 Disputed Autosomal dominant [3]
Intellectual disability DISMBNXP Limited Autosomal dominant [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Atenolol DMNKG1Z Approved Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) increases the response to substance of Atenolol. [19]
Verapamil DMA7PEW Phase 2/3 Trial Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) increases the response to substance of Verapamil. [19]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [7]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [9]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [6]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [8]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [10]
Malathion DMXZ84M Approved Malathion increases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [11]
Nefazodone DM4ZS8M Approved Nefazodone affects the activity of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [12]
Crizotinib DM4F29C Approved Crizotinib decreases the activity of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [13]
Retigabine DMGNYIH Approved Retigabine affects the activity of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [14]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the activity of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [17]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Expanding the phenotype of CACNA1C mutation disorders. Mol Genet Genomic Med. 2021 Jun;9(6):e1673. doi: 10.1002/mgg3.1673. Epub 2021 Apr 1.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Brugada Syndrome. 2005 Mar 31 [updated 2022 Aug 25]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
10 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
11 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
12 Evaluation of nefazodone-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2016 Apr 1;296:42-53. doi: 10.1016/j.taap.2016.01.015. Epub 2016 Jan 25.
13 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
14 Modulation of the heart's electrical properties by the anticonvulsant drug retigabine. Toxicol Appl Pharmacol. 2017 Aug 15;329:309-317. doi: 10.1016/j.taap.2017.06.018. Epub 2017 Jun 20.
15 Characterization of the potent, selective Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one, in cellular and in vivo models of pulmonary oxidative stress. J Pharmacol Exp Ther. 2017 Oct;363(1):114-125.
16 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Mechanisms underlying off-target effects of the cholesteryl ester transfer protein inhibitor torcetrapib involve L-type calcium channels. J Hypertens. 2010 Aug;28(8):1676-86. doi: 10.1097/HJH.0b013e32833b1f8e.
19 CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009 Aug;2(4):362-70. doi: 10.1161/CIRCGENETICS.109.857839. Epub 2009 Jun 3.