General Information of Disease (ID: DISMKWS3)

Disease Name Long QT syndrome
Synonyms ventricular arrhythmia associated with long QT syndrome; long QT syndrome; long Q-T syndrome; LQT
Disease Class BC65: Genetic cardiac arrhythmia
Definition
A condition that is characterized by episodes of fainting (syncope) and varying degree of ventricular arrhythmia as indicated by the prolonged QT interval. The inherited forms are caused by mutation of genes encoding cardiac ion channel proteins. The two major forms are Romano-Ward syndrome (also known as long QT syndrome 1) and Jervell-Lange Nielsen syndrome.
Disease Hierarchy
DIS6SVEE: Syndromic disease
DISQBA23: Congenital heart disease
DISMKWS3: Long QT syndrome
ICD Code
ICD-11
ICD-11: BC65.0
ICD-10
ICD-10: I49, I49.8
Expand ICD-11
'BC65.0
Expand ICD-10
'I49; 'I49.8
Disease Identifiers
MONDO ID
MONDO_0002442
MESH ID
D008133
UMLS CUI
C0023976
MedGen ID
44193
SNOMED CT ID
9651007

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 6 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Aprindine DMBXWU8 Approved Small molecular drug [1]
Bretylium DM1FX74 Approved Small molecular drug [2]
Disopyramide DM5SYZP Approved Small molecular drug [3]
Lidocaine DML4ZOT Approved Small molecular drug [4]
Moricizine DMOMBJW Approved Small molecular drug [5]
Oxprenolol DM51OQW Approved Small molecular drug [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
GS-6615 DMGJQVI Phase 3 Small molecular drug [7]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 23 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
CACNA1D TT7RGTM Limited Biomarker [8]
KCNB1 TT5OEKU Limited Genetic Variation [9]
KCNJ2 TTH7UO3 Limited Autosomal dominant [10]
MYBPC3 TT9WOBN Limited Genetic Variation [11]
KCNJ5 TTEO25X Disputed Autosomal dominant [10]
KCNQ2 TTPXI3S Disputed Genetic Variation [12]
KCNQ4 TT8HGRW Disputed Genetic Variation [12]
KCNA5 TTW0CMT moderate Genetic Variation [13]
KCNK3 TTGR91N moderate Genetic Variation [13]
ABCC9 TTEF5MJ Strong Genetic Variation [14]
GJA5 TTFQKZ7 Strong Biomarker [15]
GJB3 TTVRQ8L Strong Biomarker [16]
KCND3 TTPLQO0 Strong Biomarker [17]
KCNJ11 TT329V4 Strong Genetic Variation [14]
KCNJ2 TTH7UO3 Strong Genetic Variation [18]
KCNJ5 TTEO25X Strong Genetic Variation [19]
KCNJ9 TT4VHL6 Strong Genetic Variation [19]
KCNQ3 TTIVDM3 Strong Genetic Variation [12]
MYH7 TTNIMDP Strong Genetic Variation [20]
RPGR TTHBDA9 Strong Biomarker [21]
SCN10A TT90XZ8 Strong Genetic Variation [22]
SQLE TTE14XG Strong Biomarker [23]
TDP2 TTYF26D Strong Genetic Variation [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DTT(s)
This Disease Is Related to 3 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
CACNA1C DTAIV1Z Moderate Autosomal dominant [10]
KCNH2 DTD0BMQ Definitive Autosomal dominant [10]
KCNQ1 DTYE3RN Definitive Autosomal dominant [10]
------------------------------------------------------------------------------------
This Disease Is Related to 1 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP1A1 DE6OQ3W Limited Biomarker [25]
------------------------------------------------------------------------------------
This Disease Is Related to 42 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CACNB3 OTP30DIU Limited Biomarker [8]
CAV3 OTWSFDB4 Limited Autosomal dominant [10]
KCND2 OTIFUVV7 Limited Genetic Variation [26]
KCNJ2 OT2OQEZS Limited Autosomal dominant [10]
MINK1 OTKB0RA8 Limited Genetic Variation [27]
RNF207 OT9AYVGV Limited Autosomal dominant [28]
SCN1B OTGD78J3 Limited Genetic Variation [29]
SSUH2 OTWUBDV0 Limited CausalMutation [30]
AKAP9 OT7Z2YRP Disputed Autosomal dominant [10]
ANK2 OTWB4R1Y Disputed Autosomal dominant [10]
KCNE2 OTUO214Y Disputed Autosomal dominant [10]
KCNJ5 OTA2MBIE Disputed Autosomal dominant [10]
SCN4B OT3JSUWO Disputed Autosomal dominant [10]
SNTA1 OTUICTGZ Disputed Autosomal dominant [10]
ALG10 OTM1ATVR moderate Genetic Variation [31]
ALG10B OTAHWAKE moderate Genetic Variation [31]
CACNA1C OT6KFNMS Moderate Autosomal dominant [10]
KCNA4 OTTIGYN7 moderate Genetic Variation [13]
KCNE3 OTKWKR91 moderate Biomarker [32]
NOS1AP OTDFOBRU moderate Genetic Variation [33]
RYR2 OT0PF19E moderate Genetic Variation [34]
ACADM OTA4P0FC Strong Biomarker [35]
ACSBG1 OTM040MW Strong Biomarker [36]
CAVIN1 OTFO915U Strong Genetic Variation [37]
CNTN3 OTC1274J Strong Biomarker [38]
COL4A5 OTHG60RE Strong Biomarker [39]
CRX OTH435SV Strong Biomarker [21]
CUZD1 OTDQJVZ8 Strong Biomarker [23]
FLNC OT3F8J6Y Strong Biomarker [40]
KCNE5 OTF4JYGZ Strong Biomarker [41]
LYPD4 OTYNO8BS Strong Biomarker [42]
ND1 OTCLGIXV Strong Genetic Variation [43]
PELI1 OTMLBCLC Strong Genetic Variation [20]
PICALM OTQVRPMQ Strong Genetic Variation [44]
PRDM6 OTKY12D9 Strong Genetic Variation [20]
SLN OTERIU75 Strong Biomarker [45]
SNAP91 OTE3EXWZ Strong Genetic Variation [44]
TBX20 OTMPU2XQ Strong Genetic Variation [46]
TRDN OTXVE9SF Strong Autosomal recessive [10]
CALM1 OTNYA92F Definitive Autosomal dominant [10]
KCNH2 OTZX881H Definitive Autosomal dominant [10]
KCNQ1 OT8SPJNX Definitive Autosomal dominant [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 DOT(s)

References

1 Time-to-Onset Analysis of Drug-Induced Long QT Syndrome Based on a Spontaneous Reporting System for Adverse Drug Events. PLoS One. 2016 Oct 10;11(10):e0164309.
2 Bretylium FDA Label
3 Disopyramide FDA Label
4 Lidocaine FDA Label
5 Moricizine FDA Label
6 Oxprenolol FDA Label
7 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
8 The structures of the human calcium channel alpha 1 subunit (CACNL1A2) and beta subunit (CACNLB3) genes.Genomics. 1995 May 20;27(2):312-9. doi: 10.1006/geno.1995.1048.
9 A hydrophobicity-dependent motif responsible for surface expression of cardiac potassium channel.Cell Signal. 2009 Feb;21(2):349-55. doi: 10.1016/j.cellsig.2008.11.006. Epub 2008 Nov 13.
10 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
11 Multiplex targeted high-throughput sequencing for Mendelian cardiac disorders.Clin Genet. 2014 Apr;85(4):365-70. doi: 10.1111/cge.12168. Epub 2013 May 13.
12 Nervous system KV7 disorders: breakdown of a subthreshold brake.J Physiol. 2008 Apr 1;586(7):1791-801. doi: 10.1113/jphysiol.2008.150656. Epub 2008 Jan 31.
13 Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.Circulation. 2007 May 15;115(19):2481-9. doi: 10.1161/CIRCULATIONAHA.106.665406. Epub 2007 Apr 30.
14 Multiple single-nucleotide polymorphisms (SNPs) in the Japanese population in six candidate genes for long QT syndrome.J Hum Genet. 2001;46(3):158-62. doi: 10.1007/s100380170106.
15 Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis.Cardiovasc Res. 2013 Jun 1;98(3):504-14. doi: 10.1093/cvr/cvt076. Epub 2013 Mar 29.
16 Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor.Eur J Hum Genet. 2000 Dec;8(12):994-7. doi: 10.1038/sj.ejhg.5200570.
17 Mutation analysis of candidate genes SCN1B, KCND3 and ANK2 in patients with clinical diagnosis of long QT syndrome.Physiol Res. 2008;57(6):857-862. doi: 10.33549/physiolres.931184. Epub 2007 Nov 30.
18 Gene-Targeted Analysis of Clinically Diagnosed Long QT Russian Families.Int Heart J. 2017 Feb 7;58(1):81-87. doi: 10.1536/ihj.16-133. Epub 2016 Dec 21.
19 The phenotype characteristics of type 13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R).Heart Rhythm. 2013 Oct;10(10):1500-6. doi: 10.1016/j.hrthm.2013.07.022. Epub 2013 Jul 18.
20 High-throughput single-strand conformation polymorphism analysis by automated capillary electrophoresis: robust multiplex analysis and pattern-based identification of allelic variants.Hum Mutat. 1999;13(4):318-27. doi: 10.1002/(SICI)1098-1004(1999)13:4<318::AID-HUMU9>3.0.CO;2-F.
21 A Systematic Review on the Cost-Effectiveness of Genetic and Electrocardiogram Testing for Long QT Syndrome in Infants and Young Adults.Value Health. 2015 Jul;18(5):700-8. doi: 10.1016/j.jval.2015.03.1788. Epub 2015 May 16.
22 Deleterious protein-altering mutations in the SCN10A voltage-gated sodium channel gene are associated with prolonged QT.Clin Genet. 2018 Apr;93(4):741-751. doi: 10.1111/cge.13036. Epub 2017 May 18.
23 Identification of two nervous system-specific members of the erg potassium channel gene family.J Neurosci. 1997 Dec 15;17(24):9423-32. doi: 10.1523/JNEUROSCI.17-24-09423.1997.
24 The beginnings of long QT syndrome.Curr Opin Cardiol. 2015 Jan;30(1):112-7. doi: 10.1097/HCO.0000000000000135.
25 Relationship of blood aryl hydrocarbon receptor mRNA and cytochrome P450 1A1 mRNA expression with corrected QT interval among residents exposed to arsenic via drinking water. Zhonghua Xin Xue Guan Bing Za Zhi. 2016 Mar;44(3):260-4.
26 Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome.Clin Chim Acta. 2005 Jan;351(1-2):95-100. doi: 10.1016/j.cccn.2004.08.017.
27 A novel long-QT 5 gene mutation in the C-terminus (V109I) is associated with a mild phenotype.J Mol Med (Berl). 2001 Sep;79(9):504-9. doi: 10.1007/s001090100249.
28 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
29 A missense mutation in the sodium channel 1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome.Heart Rhythm. 2014 Jul;11(7):1202-9. doi: 10.1016/j.hrthm.2014.03.044. Epub 2014 Mar 21.
30 Rippling is not always electrically silent in rippling muscle disease.Muscle Nerve. 2011 Apr;43(4):601-5. doi: 10.1002/mus.21947.
31 A KCR1 variant implicated in susceptibility to the long QT syndrome.J Mol Cell Cardiol. 2011 Jan;50(1):50-7. doi: 10.1016/j.yjmcc.2010.10.007. Epub 2010 Oct 13.
32 Novel KCNE3 mutation reduces repolarizing potassium current and associated with long QT syndrome.Hum Mutat. 2009 Apr;30(4):557-63. doi: 10.1002/humu.20834.
33 Generation of the human induced pluripotent stem cell (hiPSC) line PSMi007-A from a Long QT Syndrome type 1 patient carrier of two common variants in the NOS1AP gene.Stem Cell Res. 2019 Apr;36:101416. doi: 10.1016/j.scr.2019.101416. Epub 2019 Mar 6.
34 Differential Diagnosis Between Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome Type 1- Modified Schwartz Score.Circ J. 2018 Aug 24;82(9):2269-2276. doi: 10.1253/circj.CJ-17-1032. Epub 2018 Jun 21.
35 The sudden infant death syndrome gene: does it exist?.Pediatrics. 2004 Oct;114(4):e506-12. doi: 10.1542/peds.2004-0683.
36 A wearable remote monitoring system for the identification of subjects with a prolonged QT interval or at risk for drug-induced long QT syndrome.Int J Cardiol. 2018 Sep 1;266:89-94. doi: 10.1016/j.ijcard.2018.03.097.
37 Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010 Mar 12;6(3):e1000874. doi: 10.1371/journal.pgen.1000874.
38 Health status of cardiac genetic disease patients and their at-risk relatives.Int J Cardiol. 2013 May 25;165(3):448-53. doi: 10.1016/j.ijcard.2011.08.083. Epub 2011 Sep 17.
39 Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype.Circulation. 2005 May 31;111(21):2720-6. doi: 10.1161/CIRCULATIONAHA.104.472498. Epub 2005 May 23.
40 Filamin C: a novel component of the KCNE2 interactome during hypoxia.Cardiovasc J Afr. 2016 Jan-Feb;27(1):4-11. doi: 10.5830/CVJA-2015-049.
41 Does KCNE5 play a role in long QT syndrome?.Clin Chim Acta. 2004 Jul;345(1-2):49-53. doi: 10.1016/j.cccn.2004.02.033.
42 Mortality of inherited arrhythmia syndromes: insight into their natural history.Circ Cardiovasc Genet. 2012 Apr 1;5(2):183-9. doi: 10.1161/CIRCGENETICS.111.961102. Epub 2012 Feb 28.
43 A mitochondrial DNA mutation cosegregates with the pathophysiological U wave.Biochem Biophys Res Commun. 1999 Apr 2;257(1):228-33. doi: 10.1006/bbrc.1999.0443.
44 Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J. 2019 Sep 14;40(35):2964-2975. doi: 10.1093/eurheartj/ehz311.
45 The variation of the sarcolipin gene (SLN) in atrial fibrillation, long QT syndrome and sudden arrhythmic death syndrome.Clin Chim Acta. 2007 Jan;375(1-2):87-91. doi: 10.1016/j.cca.2006.06.020. Epub 2006 Jun 22.
46 Tbx20 controls the expression of the KCNH2 gene and of hERG channels.Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E416-E425. doi: 10.1073/pnas.1612383114. Epub 2017 Jan 3.