General Information of Drug Off-Target (DOT) (ID: OT8D7CDO)

DOT Name Osteoclast-stimulating factor 1 (OSTF1)
Gene Name OSTF1
Related Disease
Multiple sclerosis ( )
Neoplasm ( )
UniProt ID
OSTF1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1X2K; 1ZLM; 3EHQ; 3EHR
Pfam ID
PF12796 ; PF00018
Sequence
MSKPPPKPVKPGQVKVFRALYTFEPRTPDELYFEEGDIIYITDMSDTNWWKGTSKGRTGL
IPSNYVAEQAESIDNPLHEAAKRGNLSWLRECLDNRVGVNGLDKAGSTALYWACHGGHKD
IVEMLFTQPNIELNQQNKLGDTALHAAAWKGYADIVQLLLAKGARTDLRNIEKKLAFDMA
TNAACASLLKKKQGTDAVRTLSNAEDYLDDEDSD
Function Induces bone resorption, acting probably through a signaling cascade which results in the secretion of factor(s) enhancing osteoclast formation and activity.
Tissue Specificity Ubiquitously expressed. Present in osteoclasts (at protein level).
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Multiple sclerosis DISB2WZI Strong Biomarker [1]
Neoplasm DISZKGEW Limited Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Osteoclast-stimulating factor 1 (OSTF1). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Osteoclast-stimulating factor 1 (OSTF1). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [7]
Sulindac DM2QHZU Approved Sulindac increases the expression of Osteoclast-stimulating factor 1 (OSTF1). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Osteoclast-stimulating factor 1 (OSTF1). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Osteoclast-stimulating factor 1 (OSTF1). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Osteoclast-stimulating factor 1 (OSTF1). [11]
------------------------------------------------------------------------------------

References

1 Association Between Exposure of Ipratropium and Salmeterol and Diagnosis of Multiple Sclerosis: A Matched Case-control Study.Clin Ther. 2019 Aug;41(8):1477-1485. doi: 10.1016/j.clinthera.2019.04.039. Epub 2019 May 23.
2 Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression.Methods Mol Biol. 2017;1513:83-100. doi: 10.1007/978-1-4939-6539-7_7.
3 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
9 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.