General Information of Drug Off-Target (DOT) (ID: OT8SRY1C)

DOT Name Annexin A11 (ANXA11)
Synonyms 56 kDa autoantigen; Annexin XI; Annexin-11; Calcyclin-associated annexin 50; CAP-50
Gene Name ANXA11
Related Disease
Amyotrophic lateral sclerosis type 23 ( )
Amyotrophic lateral sclerosis ( )
Inclusion body myopathy and brain white matter abnormalities ( )
UniProt ID
ANX11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00191
Sequence
MSYPGYPPPPGGYPPAAPGGGPWGGAAYPPPPSMPPIGLDNVATYAGQFNQDYLSGMAAN
MSGTFGGANMPNLYPGAPGAGYPPVPPGGFGQPPSAQQPVPPYGMYPPPGGNPPSRMPSY
PPYPGAPVPGQPMPPPGQQPPGAYPGQPPVTYPGQPPVPLPGQQQPVPSYPGYPGSGTVT
PAVPPTQFGSRGTITDAPGFDPLRDAEVLRKAMKGFGTDEQAIIDCLGSRSNKQRQQILL
SFKTAYGKDLIKDLKSELSGNFEKTILALMKTPVLFDIYEIKEAIKGVGTDEACLIEILA
SRSNEHIRELNRAYKAEFKKTLEEAIRSDTSGHFQRLLISLSQGNRDESTNVDMSLAQRD
AQELYAAGENRLGTDESKFNAVLCSRSRAHLVAVFNEYQRMTGRDIEKSICREMSGDLEE
GMLAVVKCLKNTPAFFAERLNKAMRGAGTKDRTLIRIMVSRSETDLLDIRSEYKRMYGKS
LYHDISGDTSGDYRKILLKICGGND
Function Binds specifically to calcyclin in a calcium-dependent manner. Required for midbody formation and completion of the terminal phase of cytokinesis.
KEGG Pathway
Amyotrophic lateral sclerosis (hsa05014 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Amyotrophic lateral sclerosis type 23 DISY3OI7 Definitive Autosomal dominant [1]
Amyotrophic lateral sclerosis DISF7HVM Supportive Autosomal dominant [2]
Inclusion body myopathy and brain white matter abnormalities DIS0A4GC Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Methotrexate DM2TEOL Approved Annexin A11 (ANXA11) affects the response to substance of Methotrexate. [19]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Annexin A11 (ANXA11). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Annexin A11 (ANXA11). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Annexin A11 (ANXA11). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Annexin A11 (ANXA11). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Annexin A11 (ANXA11). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Annexin A11 (ANXA11). [9]
Ethanol DMDRQZU Approved Ethanol increases the expression of Annexin A11 (ANXA11). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Annexin A11 (ANXA11). [11]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Annexin A11 (ANXA11). [12]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Annexin A11 (ANXA11). [13]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Annexin A11 (ANXA11). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Annexin A11 (ANXA11). [16]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Annexin A11 (ANXA11). [17]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Annexin A11 (ANXA11). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Annexin A11 (ANXA11). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Annexin A11 (ANXA11). [15]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci Transl Med. 2017 May 3;9(388):eaad9157. doi: 10.1126/scitranslmed.aad9157.
3 GABBR2 mutations determine phenotype in rett syndrome and epileptic encephalopathy. Ann Neurol. 2017 Sep;82(3):466-478. doi: 10.1002/ana.25032.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4050-61.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007 Dec 15;67(24):12007-17. doi: 10.1158/0008-5472.CAN-07-2464.
13 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
18 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
19 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.