General Information of Drug Off-Target (DOT) (ID: OT92HV6X)

DOT Name Leukocyte antigen CD37 (CD37)
Synonyms Tetraspanin-26; Tspan-26; CD antigen CD37
Gene Name CD37
UniProt ID
CD37_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00335
Sequence
MSAQESCLSLIKYFLFVFNLFFFVLGSLIFCFGIWILIDKTSFVSFVGLAFVPLQIWSKV
LAISGIFTMGIALLGCVGALKELRCLLGLYFGMLLLLFATQITLGILISTQRAQLERSLR
DVVEKTIQKYGTNPEETAAEESWDYVQFQLRCCGWHYPQDWFQVLILRGNGSEAHRVPCS
CYNLSATNDSTILDKVILPQLSRLGHLARSRHSADICAVPAESHIYREGCAQGLQKWLHN
NLISIVGICLGVGLLELGFMTLSIFLCRNLDHVYNRLARYR
Tissue Specificity B-lymphocytes.
KEGG Pathway
Hematopoietic cell lineage (hsa04640 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Leukocyte antigen CD37 (CD37). [1]
Arsenic DMTL2Y1 Approved Arsenic decreases the methylation of Leukocyte antigen CD37 (CD37). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Leukocyte antigen CD37 (CD37). [9]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Leukocyte antigen CD37 (CD37). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Leukocyte antigen CD37 (CD37). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Leukocyte antigen CD37 (CD37). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leukocyte antigen CD37 (CD37). [5]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Leukocyte antigen CD37 (CD37). [7]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Leukocyte antigen CD37 (CD37). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. Environ Health Perspect. 2019 May;127(5):57011. doi: 10.1289/EHP3849. Epub 2019 May 28.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.