General Information of Drug Off-Target (DOT) (ID: OTAIQ6V6)

DOT Name Transmembrane and coiled-coil domain protein 3 (TMCC3)
Gene Name TMCC3
Related Disease
Small lymphocytic lymphoma ( )
UniProt ID
TMCC3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10267
Sequence
MPGSDTALTVDRTYSYPGRHHRCKSRVERHDMNTLSLPLNIRRGGSDTNLNFDVPDGILD
FHKVKLTADSLKQKILKVTEQIKIEQTSRDGNVAEYLKLVNNADKQQAGRIKQVFEKKNQ
KSAHSIAQLQKKLEQYHRKLREIEQNGASRSSKDISKDHLKDIHRSLKDAHVKSRTAPHC
MESSKSGMPGVSLTPPVFVFNKSREFANLIRNKFGSADNIAHLKNSLEEFRPEASARAYG
GSATIVNKPKYGSDDECSSGTSGSADSNGNQSFGAGGASTLDSQGKLAVILEELREIKDT
QAQLAEDIEALKVQFKREYGFISQTLQEERYRYERLEDQLHDLTDLHQHETANLKQELAS
IEEKVAYQAYERSRDIQEALESCQTRISKLELHQQEQQALQTDTVNAKVLLGRCINVILA
FMTVILVCVSTIAKFVSPMMKSRCHILGTFFAVTLLAIFCKNWDHILCAIERMIIPR
Tissue Specificity Widely expressed, with highest levels in brain, spinal cord and testis.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Small lymphocytic lymphoma DIS30POX Limited Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [2]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [3]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [4]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [5]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [4]
Enzalutamide DMGL19D Approved Enzalutamide decreases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [6]
2-deoxyglucose DMIAHVU Approved 2-deoxyglucose decreases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [7]
Bleomycin DMNER5S Approved Bleomycin decreases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [7]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [6]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [5]
MGCD-0103 DM726HX Phase 2 MGCD-0103 increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [7]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [9]
Tacedinaline DM1Z74X Discontinued in Phase 2 Tacedinaline increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [12]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Transmembrane and coiled-coil domain protein 3 (TMCC3). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transmembrane and coiled-coil domain protein 3 (TMCC3). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Transmembrane and coiled-coil domain protein 3 (TMCC3). [10]
------------------------------------------------------------------------------------

References

1 Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation.Mol Cell Proteomics. 2018 Apr;17(4):776-791. doi: 10.1074/mcp.RA117.000539. Epub 2018 Jan 24.
2 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
3 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
4 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
5 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
6 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
7 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
12 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.