General Information of Drug Off-Target (DOT) (ID: OTBN890H)

DOT Name Secernin-3 (SCRN3)
Gene Name SCRN3
UniProt ID
SCRN3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03577
Sequence
MEPFSCDTFVALPPATVDNRIIFGKNSDRLYDEVQEVVYFPAVVHDNLGERLKCTYIEID
QVPETYAVVLSRPAWLWGAEMGANEHGVCIGNEAVWGREEVCDEEALLGMDLVRLGLERA
DTAEKALNVIVDLLEKYGQGGNCTEGRMVFSYHNSFLIADRNEAWILETAGKYWAAEKVQ
EGVRNISNQLSITTKIAREHPDMRNYAKRKGWWDGKKEFDFAAAYSYLDTAKMMTSSGRY
CEGYKLLNKHKGNITFETMMEILRDKPSGINMEGEFLTTASMVSILPQDSSLPCIHFFTG
TPDPERSVFKPFIFVPHISQLLDTSSPTFELEDLVKKKSHFKPDRRHPLYQKHQQALEVV
NNNEEKAKIMLDNMRKLEKELFREMESILQNKHLDVEKIVNLFPQCTKDEIQIYQSNLSV
KVSS

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Secernin-3 (SCRN3). [1]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Secernin-3 (SCRN3). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Secernin-3 (SCRN3). [3]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Secernin-3 (SCRN3). [4]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Secernin-3 (SCRN3). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Secernin-3 (SCRN3). [6]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Secernin-3 (SCRN3). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Secernin-3 (SCRN3). [8]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Secernin-3 (SCRN3). [9]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Secernin-3 (SCRN3). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
5 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
6 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
7 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
10 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.