General Information of Drug Off-Target (DOT) (ID: OTDJYEO7)

DOT Name Glutathione hydrolase 5 proenzyme (GGT5)
Synonyms
EC 3.4.19.13; Gamma-glutamyl transpeptidase-related enzyme; GGT-rel; Gamma-glutamyltransferase 5; GGT 5; EC 2.3.2.2; Gamma-glutamyltransferase-like activity 1; Gamma-glutamyltranspeptidase 5; Leukotriene-C4 hydrolase; EC 3.4.19.14
Gene Name GGT5
UniProt ID
GGT5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.2.2; 3.4.19.13; 3.4.19.14
Pfam ID
PF01019
Sequence
MARGYGATVSLVLLGLGLALAVIVLAVVLSRHQAPCGPQAFAHAAVAADSKVCSDIGRAI
LQQQGSPVDATIAALVCTSVVNPQSMGLGGGVIFTIYNVTTGKVEVINARETVPASHAPS
LLDQCAQALPLGTGAQWIGVPGELRGYAEAHRRHGRLPWAQLFQPTIALLRGGHVVAPVL
SRFLHNSILRPSLQASTLRQLFFNGTEPLRPQDPLPWPALATTLETVATEGVEVFYTGRL
GQMLVEDIAKEGSQLTLQDLAKFQPEVVDALEVPLGDYTLYSPPPPAGGAILSFILNVLR
GFNFSTESMARPEGRVNVYHHLVETLKFAKGQRWRLGDPRSHPKLQNASRDLLGETLAQL
IRQQIDGRGDHQLSHYSLAEAWGHGTGTSHVSVLGEDGSAVAATSTINTPFGAMVYSPRT
GIILNNELLDLCERCPRGSGTTPSPVSGDRVGGAPGRCWPPVPGERSPSSMVPSILINKA
QGSKLVIGGAGGELIISAVAQAIMSKLWLGFDLRAAIAAPILHVNSKGCVEYEPNFSQEV
QRGLQDRGQNQTQRPFFLNVVQAVSQEGACVYAVSDLRKSGEAAGY
Function
Cleaves the gamma-glutamyl peptide bond of glutathione and glutathione-S-conjugate such as leukotriene C4. Does not cleaves gamma-glutamyl compounds such as gamma-glutamyl leucine. May also catalyze a transpeptidation reaction in addition to the hydrolysis reaction, transferring the gamma-glutamyl moiety to an acceptor amino acid to form a new gamma-glutamyl compound. Acts as a negative regulator of geranylgeranyl glutathione bioactivity by cleaving off its gamma-glutamyl group, playing a role in adaptive immune responses.
KEGG Pathway
Taurine and hypotaurine metabolism (hsa00430 )
Glutathione metabolism (hsa00480 )
Arachidonic acid metabolism (hsa00590 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Synthesis of Leukotrienes (LT) and Eoxins (EX) (R-HSA-2142691 )
Aflatoxin activation and detoxification (R-HSA-5423646 )
LTC4-CYSLTR mediated IL4 production (R-HSA-9664535 )
Paracetamol ADME (R-HSA-9753281 )
Glutathione synthesis and recycling (R-HSA-174403 )
BioCyc Pathway
MetaCyc:HS01949-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Glutathione hydrolase 5 proenzyme (GGT5). [1]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [4]
Triclosan DMZUR4N Approved Triclosan increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [5]
Progesterone DMUY35B Approved Progesterone increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [6]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [7]
Fluticasone propionate DMRWLB2 Approved Fluticasone propionate increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [8]
Beclomethasone dipropionate DM5NW1E Phase 4 Beclomethasone dipropionate increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [9]
Maleic Acid DM4L0R7 Investigative Maleic Acid increases the expression of Glutathione hydrolase 5 proenzyme (GGT5). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
6 Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011 Jul;26(7):1813-25.
7 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
8 A novel pharmacologic action of glucocorticosteroids on leukotriene C4 catabolism. J Allergy Clin Immunol. 2001 Jul;108(1):122-4.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Profiling transcriptomes of human SH-SY5Y neuroblastoma cells exposed to maleic acid. PeerJ. 2017 Apr 5;5:e3175.