General Information of Drug Off-Target (DOT) (ID: OTDWSQ0L)

DOT Name 2-Hydroxyacid oxidase 2 (HAO2)
Synonyms HAOX2; EC 1.1.3.15; (S)-2-hydroxy-acid oxidase, peroxisomal; Cell growth-inhibiting gene 16 protein; Long chain alpha-hydroxy acid oxidase; Long-chain L-2-hydroxy acid oxidase
Gene Name HAO2
Related Disease
Advanced cancer ( )
Clear cell renal carcinoma ( )
Familial hyperinsulinism ( )
Hepatocellular carcinoma ( )
Inborn error of metabolism ( )
Primary hyperoxaluria ( )
Primary hyperoxaluria type 1 ( )
Cholestasis ( )
UniProt ID
HAOX2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.1.3.15
Pfam ID
PF01070
Sequence
MSLVCLTDFQAHAREQLSKSTRDFIEGGADDSITRDDNIAAFKRIRLRPRYLRDVSEVDT
RTTIQGEEISAPICIAPTGFHCLVWPDGEMSTARAAQAAGICYITSTFASCSLEDIVIAA
PEGLRWFQLYVHPDLQLNKQLIQRVESLGFKALVITLDTPVCGNRRHDIRNQLRRNLTLT
DLQSPKKGNAIPYFQMTPISTSLCWNDLSWFQSITRLPIILKGILTKEDAELAVKHNVQG
IIVSNHGGRQLDEVLASIDALTEVVAAVKGKIEVYLDGGVRTGNDVLKALALGAKCIFLG
RPILWGLACKGEHGVKEVLNILTNEFHTSMALTGCRSVAEINRNLVQFSRL
Function
Oxidase that catalyzes the oxidation of medium and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, to the correspondong 2-oxoacids. Its role in the oxidation of 2-hydroxy fatty acids may contribute to the general pathway of fatty acid alpha-oxidation (Probable). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2. Is not active on glycolate, glyoxylate, L-lactate and 2-hydroxybutanoate.
Tissue Specificity Expressed in the liver and kidney.
KEGG Pathway
Glyoxylate and dicarboxylate metabolism (hsa00630 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Peroxisome (hsa04146 )
Reactome Pathway
Peroxisomal protein import (R-HSA-9033241 )
Peroxisomal lipid metabolism (R-HSA-390918 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [1]
Familial hyperinsulinism DISHQKQE Strong Biomarker [2]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [3]
Inborn error of metabolism DISO5FAY Strong Biomarker [4]
Primary hyperoxaluria DIS0L16N Strong Biomarker [5]
Primary hyperoxaluria type 1 DISS210K Strong Biomarker [6]
Cholestasis DISDJJWE Limited Biomarker [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of 2-Hydroxyacid oxidase 2 (HAO2). [8]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 2-Hydroxyacid oxidase 2 (HAO2). [9]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 2-Hydroxyacid oxidase 2 (HAO2). [10]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of 2-Hydroxyacid oxidase 2 (HAO2). [9]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of 2-Hydroxyacid oxidase 2 (HAO2). [12]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of 2-Hydroxyacid oxidase 2 (HAO2). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 2-Hydroxyacid oxidase 2 (HAO2). [13]
------------------------------------------------------------------------------------

References

1 HAO2 inhibits malignancy of clear cell renal cell carcinoma by promoting lipid catabolic process.J Cell Physiol. 2019 Dec;234(12):23005-23016. doi: 10.1002/jcp.28861. Epub 2019 May 24.
2 Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria.Pediatr Nephrol. 2017 Nov;32(11):2159-2163. doi: 10.1007/s00467-017-3741-1. Epub 2017 Jul 27.
3 Computational discovery of niclosamide ethanolamine, a repurposed drug candidate that reduces growth of hepatocellular carcinoma cells initro and in mice by inhibiting cell division cycle 37 signaling. Gastroenterology. 2017 Jun;152(8):2022-2036.
4 Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I.Mol Ther. 2016 Apr;24(4):719-25. doi: 10.1038/mt.2015.224. Epub 2015 Dec 22.
5 Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria.Mol Ther. 2018 Aug 1;26(8):1983-1995. doi: 10.1016/j.ymthe.2018.05.016. Epub 2018 Jun 15.
6 CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I.Nat Commun. 2018 Dec 21;9(1):5454. doi: 10.1038/s41467-018-07827-1.
7 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
8 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
9 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
10 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
11 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
12 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.