General Information of Drug Off-Target (DOT) (ID: OTE2ZGFB)

DOT Name Tetratricopeptide repeat protein 39B (TTC39B)
Synonyms TPR repeat protein 39B
Gene Name TTC39B
Related Disease
Endometriosis ( )
Esophageal squamous cell carcinoma ( )
Gallbladder disease ( )
UniProt ID
TT39B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10300 ; PF13181
Sequence
MDAVLACRLRGRGNRVAALRPRPRPGGSAGPSPFALLCAGLSPEPRAGVGSEFPAWFLGG
SSQRRNMALLGSRAELEADEDVFEDALETISISSHSDMATSSLHFASCDTQQAPRQRGAS
TVSSSSSTKVDLKSGLEECAVALNLFLSNKFTDALELLRPWAKESMYHALGYSTIVVLQA
VLTFEQQDIQNGISAMKDALQTCQKYRKKYTVVESFSSLLSRGSLEQLSEEEMHAEICYA
ECLLQKAALTFVQDENMINFIKGGLKIRTSYQIYKECLSILHEIQKNKLQQEFFYEFEGG
VKLGSGAFNLMLSLLPARIIRLLEFIGFSGNRELGLLQLREGASGRSMRSALCCLTILAF
HTYISLILGTGEVNVAEAERLLAPFLQQFPNGSLVLFYHARIELLKGNLEEAQEVFQKCI
SVQEEWKQFHHLCYWELMWINVFQQNWMQAYYYSDLLCKESKWSKATYVFLKAAILSMLP
EEDVVATNENVVTLFRQVDSLKQRIAGKSIPTEKFAVRKARRYSASLPAPVKLILPALEM
MYVWNGFSIVSKRKDLSENLLVTVEKAEAALQSQNFNSFSVDDECLVKLLKGCCLKNLQR
PLQAELCYNHVVESEKLLKYDHYLVPFTLFELASLYKSQGEIDKAIKFLETARNNYKDYS
LESRLHFRIQAALHLWRKPSSD
Function Regulates high density lipoprotein (HDL) cholesterol metabolism by promoting the ubiquitination and degradation of the oxysterols receptors LXR (NR1H2 and NR1H3).

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Endometriosis DISX1AG8 Strong Biomarker [1]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [2]
Gallbladder disease DISA6W3T Strong Genetic Variation [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [4]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [14]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tetratricopeptide repeat protein 39B (TTC39B). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis.Nat Commun. 2016 Jul 25;7:12350. doi: 10.1038/ncomms12350.
2 BRCA2 loss-of-function germline mutations are associated with esophageal squamous cell carcinoma risk in Chinese.Int J Cancer. 2020 Feb 15;146(4):1042-1051. doi: 10.1002/ijc.32619. Epub 2019 Aug 26.
3 Lipids, obesity and gallbladder disease in women: insights from genetic studies using the cardiovascular gene-centric 50K SNP array.Eur J Hum Genet. 2016 Jan;24(1):106-12. doi: 10.1038/ejhg.2015.63. Epub 2015 Apr 29.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
15 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.