General Information of Drug Off-Target (DOT) (ID: OTEP3QGN)

DOT Name Excitatory amino acid transporter 2 (SLC1A2)
Synonyms Glutamate/aspartate transporter II; Sodium-dependent glutamate/aspartate transporter 2; Solute carrier family 1 member 2
Gene Name SLC1A2
Related Disease
Developmental and epileptic encephalopathy, 41 ( )
Undetermined early-onset epileptic encephalopathy ( )
UniProt ID
EAA2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7VR7; 7VR8; 7XR4; 7XR6
Pfam ID
PF00375
Sequence
MASTEGANNMPKQVEVRMHDSHLGSEEPKHRHLGLRLCDKLGKNLLLTLTVFGVILGAVC
GGLLRLASPIHPDVVMLIAFPGDILMRMLKMLILPLIISSLITGLSGLDAKASGRLGTRA
MVYYMSTTIIAAVLGVILVLAIHPGNPKLKKQLGPGKKNDEVSSLDAFLDLIRNLFPENL
VQACFQQIQTVTKKVLVAPPPDEEANATSAVVSLLNETVTEVPEETKMVIKKGLEFKDGM
NVLGLIGFFIAFGIAMGKMGDQAKLMVDFFNILNEIVMKLVIMIMWYSPLGIACLICGKI
IAIKDLEVVARQLGMYMVTVIIGLIIHGGIFLPLIYFVVTRKNPFSFFAGIFQAWITALG
TASSAGTLPVTFRCLEENLGIDKRVTRFVLPVGATINMDGTALYEAVAAIFIAQMNGVVL
DGGQIVTVSLTATLASVGAASIPSAGLVTMLLILTAVGLPTEDISLLVAVDWLLDRMRTS
VNVVGDSFGAGIVYHLSKSELDTIDSQHRVHEDIEMTKTQSIYDDMKNHRESNSNQCVYA
AHNSVIVDECKVTLAANGKSADCSVEEEPWKREK
Function
Sodium-dependent, high-affinity amino acid transporter that mediates the uptake of L-glutamate and also L-aspartate and D-aspartate. Functions as a symporter that transports one amino acid molecule together with two or three Na(+) ions and one proton, in parallel with the counter-transport of one K(+) ion. Mediates Cl(-) flux that is not coupled to amino acid transport; this avoids the accumulation of negative charges due to aspartate and Na(+) symport. Essential for the rapid removal of released glutamate from the synaptic cleft, and for terminating the postsynaptic action of glutamate.
KEGG Pathway
Sy.ptic vesicle cycle (hsa04721 )
Glutamatergic sy.pse (hsa04724 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Reactome Pathway
Glutamate Neurotransmitter Release Cycle (R-HSA-210500 )
Transport of inorganic cations/anions and amino acids/oligopeptides (R-HSA-425393 )
Astrocytic Glutamate-Glutamine Uptake And Metabolism (R-HSA-210455 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Developmental and epileptic encephalopathy, 41 DISFFS50 Definitive Autosomal dominant [1]
Undetermined early-onset epileptic encephalopathy DISISEI2 Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Excitatory amino acid transporter 2 (SLC1A2) decreases the response to substance of Cisplatin. [22]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Excitatory amino acid transporter 2 (SLC1A2). [3]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [12]
Rifampicin DM5DSFZ Approved Rifampicin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [13]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [12]
Vitamin A DMJ2AH4 Approved Vitamin A increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [12]
Thiamphenicol DMDRKH2 Approved Thiamphenicol increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [15]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [18]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [19]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Excitatory amino acid transporter 2 (SLC1A2). [20]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [21]
(11-BETA)-11,21-DIHYDROXY-PREGN-4-ENE-3,20-DIONE DMTPQ84 Investigative (11-BETA)-11,21-DIHYDROXY-PREGN-4-ENE-3,20-DIONE increases the expression of Excitatory amino acid transporter 2 (SLC1A2). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies. Am J Hum Genet. 2016 Aug 4;99(2):287-98. doi: 10.1016/j.ajhg.2016.06.003. Epub 2016 Jul 28.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
12 Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem. 2007 Jan 19;282(3):1727-37. doi: 10.1074/jbc.M609822200. Epub 2006 Nov 30.
13 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
14 Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol. 2011 Dec;232(2):203-11. doi: 10.1016/j.expneurol.2011.09.002. Epub 2011 Sep 16.
15 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
16 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
17 Bisphenol A exposure disrupts aspartate transport in HepG2 cells. J Biochem Mol Toxicol. 2020 Aug;34(8):e22516. doi: 10.1002/jbt.22516. Epub 2020 May 3.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
20 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
21 Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):273-83.
22 CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med. 2011 Apr 6;3(77):77ra30. doi: 10.1126/scitranslmed.3001423.