General Information of Drug Off-Target (DOT) (ID: OTJ9UCIH)

DOT Name Protocadherin beta-2 (PCDHB2)
Synonyms PCDH-beta-2
Gene Name PCDHB2
UniProt ID
PCDB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00028 ; PF08266 ; PF16492
Sequence
MEAGEGKERVPKQRQVLIFFVLLGIAQASCQPRHYSVAEETESGSFVANLLKDLGLEIGE
LAVRGARVVSKGKKMHLQFDRQTGDLLLNEKLDREELCGPTEPCVLPFQVLLENPLQFFQ
AELRIRDVNDHSPVFLDKEILLKIPESITPGTTFLIERAQDLDVGTNSLQNYTISPNFHF
HLNLQDSLDGIILPQLVLNRALDREEQPEIRLTLTALDGGSPPRSGTALVRIEVVDINDN
VPEFAKLLYEVQIPEDSPVGSQVAIVSARDLDIGTNGEISYAFSQASEDIRKTFRLSAKS
GELLLRQKLDFESIQTYTVNIQATDGGGLSGTCVVFVQVMDLNDNPPELTMSTLINQIPE
NLQDTLIAVFSVSDPDSGDNGRMVCSIQDDLPFFLKPSVENFYTLVISTALDRETRSEYN
ITITVTDFGTPRLKTEHNITVLVSDVNDNAPAFTQTSYTLFVRENNSPALHIGSVSATDR
DSGTNAQVTYSLLPPQDPHLPLASLVSINADNGHLFALQSLDYEALQAFEFRVGAADRGS
PALSSEALVRVLVLDANDNSPFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQ
NAWLSYQLLKATEPGLFGVWAHNGEVRTARLLRERDAAKQRLVVLVKDNGEPPRSATATL
HVLLVDGFSQPYLLLPEAAPAQAQADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSR
AASVGRCSVPEGPFPGQMVDVSGTGTLSQSYQYEVCLTGGSGTNEFKFLKPIIPNFVAQG
AERVSEANPSFRKSFEFT
Function Potential calcium-dependent cell-adhesion protein. May be involved in the establishment and maintenance of specific neuronal connections in the brain.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Protocadherin beta-2 (PCDHB2) affects the response to substance of Temozolomide. [12]
DTI-015 DMXZRW0 Approved Protocadherin beta-2 (PCDHB2) affects the response to substance of DTI-015. [12]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protocadherin beta-2 (PCDHB2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protocadherin beta-2 (PCDHB2). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protocadherin beta-2 (PCDHB2). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Protocadherin beta-2 (PCDHB2). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Protocadherin beta-2 (PCDHB2). [5]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Protocadherin beta-2 (PCDHB2). [6]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protocadherin beta-2 (PCDHB2). [7]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Protocadherin beta-2 (PCDHB2). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Protocadherin beta-2 (PCDHB2). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Protocadherin beta-2 (PCDHB2). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Protocadherin beta-2 (PCDHB2). [11]
------------------------------------------------------------------------------------

References

1 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
8 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.