General Information of Drug Off-Target (DOT) (ID: OTJKZ6G9)

DOT Name Transmembrane protein 168 (TMEM168)
Gene Name TMEM168
UniProt ID
TM168_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MCKSLRYCFSHCLYLAMTRLEEVNREVNMHSSVRYLGYLARINLLVAICLGLYVRWEKTA
NSLILVIFILGLFVLGIASILYYYFSMEAASLSLSNLWFGFLLGLLCFLDNSSFKNDVKE
ESTKYLLLTSIVLRILCSLVERISGYVRHRPTLLTTVEFLELVGFAIASTTMLVEKSLSV
ILLVVALAMLIIDLRMKSFLAIPNLVIFAVLLFFSSLETPKNPIAFACFFICLITDPFLD
IYFSGLSVTERWKPFLYRGRICRRLSVVFAGMIELTFFILSAFKLRDTHLWYFVIPGFSI
FGIFWMICHIIFLLTLWGFHTKLNDCHKVYFTHRTDYNSLDRIMASKGMRHFCLISEQLV
FFSLLATAILGAVSWQPTNGIFLSMFLIVLPLESMAHGLFHELGNCLGGTSVGYAIVIPT
NFCSPDGQPTLLPPEHVQELNLRSTGMLNAIQRFFAYHMIETYGCDYSTSGLSFDTLHSK
LKAFLELRTVDGPRHDTYILYYSGHTHGTGEWALAGGDTLRLDTLIEWWREKNGSFCSRL
IIVLDSENSTPWVKEVRKINDQYIAVQGAELIKTVDIEEADPPQLGDFTKDWVEYNCNSS
NNICWTEKGRTVKAVYGVSKRWSDYTLHLPTGSDVAKHWMLHFPRITYPLVHLANWLCGL
NLFWICKTCFRCLKRLKMSWFLPTVLDTGQGFKLVKS
Function
Plays a key role in maintaining the cardiac electrical stability by modulating cell surface expression of SCN5A. May play a role in the modulation of anxiety behavior by regulating GABAergic neuronal system in the nucleus accumbens.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Transmembrane protein 168 (TMEM168) affects the response to substance of Paclitaxel. [17]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Transmembrane protein 168 (TMEM168). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Transmembrane protein 168 (TMEM168). [6]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Transmembrane protein 168 (TMEM168). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transmembrane protein 168 (TMEM168). [12]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transmembrane protein 168 (TMEM168). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Transmembrane protein 168 (TMEM168). [3]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Transmembrane protein 168 (TMEM168). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transmembrane protein 168 (TMEM168). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transmembrane protein 168 (TMEM168). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Transmembrane protein 168 (TMEM168). [8]
Testosterone DM7HUNW Approved Testosterone increases the expression of Transmembrane protein 168 (TMEM168). [9]
Selenium DM25CGV Approved Selenium decreases the expression of Transmembrane protein 168 (TMEM168). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Transmembrane protein 168 (TMEM168). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transmembrane protein 168 (TMEM168). [14]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Transmembrane protein 168 (TMEM168). [15]
CH-223191 DMMJZYC Investigative CH-223191 decreases the expression of Transmembrane protein 168 (TMEM168). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
16 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
17 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.