General Information of Drug Off-Target (DOT) (ID: OTNBHULA)

DOT Name Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1)
Synonyms PACAP type I receptor; PACAP-R-1; PACAP-R1
Gene Name ADCYAP1R1
UniProt ID
PACR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2JOD; 3N94; 6LPB; 6M1H; 6M1I; 6P9Y; 7JQD; 8E3X
Pfam ID
PF00002 ; PF02793
Sequence
MAGVVHVSLAALLLLPMAPAMHSDCIFKKEQAMCLEKIQRANELMGFNDSSPGCPGMWDN
ITCWKPAHVGEMVLVSCPELFRIFNPDQVWETETIGESDFGDSNSLDLSDMGVVSRNCTE
DGWSEPFPHYFDACGFDEYESETGDQDYYYLSVKALYTVGYSTSLVTLTTAMVILCRFRK
LHCTRNFIHMNLFVSFMLRAISVFIKDWILYAEQDSNHCFISTVECKAVMVFFHYCVVSN
YFWLFIEGLYLFTLLVETFFPERRYFYWYTIIGWGTPTVCVTVWATLRLYFDDTGCWDMN
DSTALWWVIKGPVVGSIMVNFVLFIGIIVILVQKLQSPDMGGNESSIYLRLARSTLLLIP
LFGIHYTVFAFSPENVSKRERLVFELGLGSFQGFVVAVLYCFLNGEVQAEIKRKWRSWKV
NRYFAVDFKHRHPSLASSGVNGGTQLSILSKSSSQIRMSGLPADNLAT
Function
This is a receptor for PACAP-27 and PACAP-38. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase. May regulate the release of adrenocorticotropin, luteinizing hormone, growth hormone, prolactin, epinephrine, and catecholamine. May play a role in spermatogenesis and sperm motility. Causes smooth muscle relaxation and secretion in the gastrointestinal tract.
Tissue Specificity Most abundant in the brain, low expression in the lung, liver, thymus, spleen, pancreas and placenta.
KEGG Pathway
cAMP sig.ling pathway (hsa04024 )
Neuroactive ligand-receptor interaction (hsa04080 )
Circadian entrainment (hsa04713 )
Insulin secretion (hsa04911 )
Renin secretion (hsa04924 )
Reactome Pathway
G alpha (s) signalling events (R-HSA-418555 )
Glucagon-type ligand receptors (R-HSA-420092 )
NGF-independant TRKA activation (R-HSA-187024 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [1]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [7]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [2]
Marinol DM70IK5 Approved Marinol increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [3]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [2]
Haloperidol DM96SE0 Approved Haloperidol affects the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [4]
Olanzapine DMPFN6Y Approved Olanzapine affects the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [4]
Exemestane DM9HPW3 Approved Exemestane increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [5]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [5]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [6]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Pituitary adenylate cyclase-activating polypeptide type I receptor (ADCYAP1R1). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
3 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
4 Neuroleptic Drugs and PACAP Differentially Affect the mRNA Expression of Genes Encoding PAC1/VPAC Type Receptors. Neurochem Res. 2017 Apr;42(4):943-952. doi: 10.1007/s11064-016-2127-2. Epub 2016 Nov 30.
5 Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone. 2007 Apr;40(4):876-87. doi: 10.1016/j.bone.2006.11.029. Epub 2006 Dec 28.
6 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
7 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
8 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.