General Information of Drug Off-Target (DOT) (ID: OTOB6Z3F)

DOT Name Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5)
Synonyms EC 2.8.2.23; Heparan sulfate D-glucosaminyl 3-O-sulfotransferase 5; 3-OST-5; Heparan sulfate 3-O-sulfotransferase 5; h3-OST-5
Gene Name HS3ST5
Related Disease
Schizophrenia ( )
Melanoma ( )
UniProt ID
HS3S5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3BD9; 7SCD; 7SCE
EC Number
2.8.2.23
Pfam ID
PF00685
Sequence
MLFKQQAWLRQKLLVLGSLAVGSLLYLVARVGSLDRLQPICPIEGRLGGARTQAEFPLRA
LQFKRGLLHEFRKGNASKEQVRLHDLVQQLPKAIIIGVRKGGTRALLEMLNLHPAVVKAS
QEIHFFDNDENYGKGIEWYRKKMPFSYPQQITIEKSPAYFITEEVPERIYKMNSSIKLLI
IVREPTTRAISDYTQVLEGKERKNKTYYKFEKLAIDPNTCEVNTKYKAVRTSIYTKHLER
WLKYFPIEQFHVVDGDRLITEPLPELQLVEKFLNLPPRISQYNLYFNATRGFYCLRFNII
FNKCLAGSKGRIHPEVDPSVITKLRKFFHPFNQKFYQITGRTLNWP
Function
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site. Also generates GlcUA-GlcNS or IdoUA-GlcNS and IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry.
Tissue Specificity Highly expressed in skeletal muscle and fetal brain, and also found in adult brain, spinal cord, cerebellum and colon.
KEGG Pathway
Glycosaminoglycan biosynthesis - heparan sulfate / heparin (hsa00534 )
Reactome Pathway
HS-GAG biosynthesis (R-HSA-2022928 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Schizophrenia DISSRV2N Strong Genetic Variation [1]
Melanoma DIS1RRCY moderate Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [7]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [8]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [8]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Heparan sulfate glucosamine 3-O-sulfotransferase 5 (HS3ST5). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Genome-wide association analysis with gray matter volume as a quantitative phenotype in first-episode treatment-nave patients with schizophrenia.PLoS One. 2013 Sep 24;8(9):e75083. doi: 10.1371/journal.pone.0075083. eCollection 2013.
2 Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation.Oncotarget. 2012 Apr;3(4):399-413. doi: 10.18632/oncotarget.473.
3 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
10 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
11 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.