General Information of Drug Off-Target (DOT) (ID: OTPJX9B4)

DOT Name Dual specificity protein phosphatase 3 (DUSP3)
Synonyms EC 3.1.3.16; EC 3.1.3.48; Dual specificity protein phosphatase VHR; Vaccinia H1-related phosphatase; VHR
Gene Name DUSP3
UniProt ID
DUS3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1J4X; 1VHR; 3F81
EC Number
3.1.3.16; 3.1.3.48
Pfam ID
PF00782
Sequence
MSGSFELSVQDLNDLLSDGSGCYSLPSQPCNEVTPRIYVGNASVAQDIPKLQKLGITHVL
NAAEGRSFMHVNTNANFYKDSGITYLGIKANDTQEFNLSAYFERAADFIDQALAQKNGRV
LVHCREGYSRSPTLVIAYLMMRQKMDVKSALSIVRQNREIGPNDGFLAQLCQLNDRLAKE
GKLKP
Function Shows activity both for tyrosine-protein phosphate and serine-protein phosphate, but displays a strong preference toward phosphotyrosines. Specifically dephosphorylates and inactivates ERK1 and ERK2.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Reactome Pathway
ERKs are inactivated (R-HSA-202670 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved Dual specificity protein phosphatase 3 (DUSP3) affects the response to substance of Topotecan. [17]
Gefitinib DM15F0X Approved Dual specificity protein phosphatase 3 (DUSP3) affects the response to substance of Gefitinib. [18]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Dual specificity protein phosphatase 3 (DUSP3). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Dual specificity protein phosphatase 3 (DUSP3). [6]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Dual specificity protein phosphatase 3 (DUSP3). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [3]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Dual specificity protein phosphatase 3 (DUSP3). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [7]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Dual specificity protein phosphatase 3 (DUSP3). [4]
Menadione DMSJDTY Approved Menadione affects the expression of Dual specificity protein phosphatase 3 (DUSP3). [8]
Paclitaxel DMLB81S Approved Paclitaxel decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [9]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [10]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Dual specificity protein phosphatase 3 (DUSP3). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Dual specificity protein phosphatase 3 (DUSP3). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Dual specificity protein phosphatase 3 (DUSP3). [15]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Dual specificity protein phosphatase 3 (DUSP3). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Dual specificity protein phosphatase 3 (DUSP3). [12]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Effects of paclitaxel on proliferation and apoptosis in human acute myeloid leukemia HL-60 cells. Acta Pharmacol Sin. 2004 Mar;25(3):378-84.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007 Dec 15;67(24):12007-17. doi: 10.1158/0008-5472.CAN-07-2464.
12 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
13 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
16 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
17 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
18 Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet. 2004 Dec 15;13(24):3029-43. doi: 10.1093/hmg/ddh331. Epub 2004 Oct 20.