General Information of Drug Off-Target (DOT) (ID: OTRFKK0G)

DOT Name Sideroflexin-2 (SFXN2)
Gene Name SFXN2
UniProt ID
SFXN2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03820
Sequence
MEADLSGFNIDAPRWDQRTFLGRVKHFLNITDPRTVFVSERELDWAKVMVEKSRMGVVPP
GTQVEQLLYAKKLYDSAFHPDTGEKMNVIGRMSFQLPGGMIITGFMLQFYRTMPAVIFWQ
WVNQSFNALVNYTNRNAASPTSVRQMALSYFTATTTAVATAVGMNMLTKKAPPLVGRWVP
FAAVAAANCVNIPMMRQQELIKGICVKDRNENEIGHSRRAAAIGITQVVISRITMSAPGM
ILLPVIMERLEKLHFMQKVKVLHAPLQVMLSGCFLIFMVPVACGLFPQKCELPVSYLEPK
LQDTIKAKYGELEPYVYFNKGL
Function Mitochondrial amino-acid transporter that mediates transport of serine into mitochondria. Involved in mitochondrial iron homeostasis by regulating heme biosynthesis.
Tissue Specificity Widely expressed, highest levels in kidney, liver, and pancreas.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Sideroflexin-2 (SFXN2). [1]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sideroflexin-2 (SFXN2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Sideroflexin-2 (SFXN2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sideroflexin-2 (SFXN2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sideroflexin-2 (SFXN2). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sideroflexin-2 (SFXN2). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Sideroflexin-2 (SFXN2). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Sideroflexin-2 (SFXN2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Sideroflexin-2 (SFXN2). [9]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Sideroflexin-2 (SFXN2). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Sideroflexin-2 (SFXN2). [11]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Sideroflexin-2 (SFXN2). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sideroflexin-2 (SFXN2). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Sideroflexin-2 (SFXN2). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Sideroflexin-2 (SFXN2). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Sideroflexin-2 (SFXN2). [15]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Sideroflexin-2 (SFXN2). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Sideroflexin-2 (SFXN2). [17]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Sideroflexin-2 (SFXN2). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
9 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
10 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
13 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.