General Information of Drug Off-Target (DOT) (ID: OTTKJ2C0)

DOT Name Transmembrane protein 92 (TMEM92)
Gene Name TMEM92
Related Disease
Nervous system disease ( )
UniProt ID
TMM92_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF11669
Sequence
MSQAWVPGLAPTLLFSLLAGPQKIAAKCGLILACPKGFKCCGDSCCQENELFPGPVRIFV
IIFLVILSVFCICGLAKCFCRNCREPEPDSPVDCRGPLELPSIIPPERVRVSLSAPPPPY
SEVILKPSLGPTPTEPPPPYSFRPEEYTGDQRGIDNPAF

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Nervous system disease DISJ7GGT Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Transmembrane protein 92 (TMEM92). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transmembrane protein 92 (TMEM92). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Transmembrane protein 92 (TMEM92). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transmembrane protein 92 (TMEM92). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Transmembrane protein 92 (TMEM92). [6]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Transmembrane protein 92 (TMEM92). [7]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Transmembrane protein 92 (TMEM92). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Transmembrane protein 92 (TMEM92). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
7 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.