General Information of Drug Off-Target (DOT) (ID: OTUBFRPC)

DOT Name Nuclear receptor ROR-gamma (RORC)
Synonyms Nuclear receptor RZR-gamma; Nuclear receptor subfamily 1 group F member 3; RAR-related orphan receptor C; Retinoid-related orphan receptor-gamma
Gene Name RORC
Related Disease
Autosomal recessive mendelian susceptibility to mycobacterial diseases due to complete RORgamma receptor deficiency ( )
UniProt ID
RORG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3B0W ; 3KYT ; 3L0J ; 3L0L ; 4NB6 ; 4NIE ; 4QM0 ; 4S14 ; 4WLB ; 4WPF ; 4WQP ; 4XT9 ; 4YMQ ; 4YPQ ; 4ZJR ; 4ZJW ; 4ZOM ; 5APH ; 5APJ ; 5APK ; 5AYG ; 5C4O ; 5C4S ; 5C4T ; 5C4U ; 5EJV ; 5ETH ; 5G42 ; 5G43 ; 5G44 ; 5G45 ; 5G46 ; 5IXK ; 5IZ0 ; 5K38 ; 5K3L ; 5K3M ; 5K3N ; 5K6E ; 5K74 ; 5LWP ; 5M96 ; 5NI5 ; 5NI7 ; 5NI8 ; 5NIB ; 5NTI ; 5NTK ; 5NTN ; 5NTP ; 5NTQ ; 5NTW ; 5NU1 ; 5UFO ; 5UFR ; 5UHI ; 5VB3 ; 5VB5 ; 5VB6 ; 5VB7 ; 5VQK ; 5VQL ; 5W4R ; 5W4V ; 5X8Q ; 5YP5 ; 5YP6 ; 5ZA1 ; 6A22 ; 6B30 ; 6B31 ; 6B33 ; 6BN6 ; 6BR2 ; 6BR3 ; 6CN5 ; 6CN6 ; 6CVH ; 6E3E ; 6E3G ; 6ESN ; 6FGQ ; 6FZU ; 6G05 ; 6G07 ; 6IVX ; 6J1L ; 6J3N ; 6LO9 ; 6LOA ; 6LOB ; 6LOC ; 6NAD ; 6NWS ; 6NWT ; 6NWU ; 6O3Z ; 6O98 ; 6P9F ; 6Q2W ; 6Q6M ; 6Q6O ; 6Q7A ; 6Q7H ; 6R7A ; 6R7J ; 6R7K ; 6SAL ; 6SLZ ; 6T4G ; 6T4I ; 6T4J ; 6T4K ; 6T4T ; 6T4U ; 6T4W ; 6T4X ; 6T4Y ; 6T50 ; 6TLM ; 6TLQ ; 6TLT ; 6U25 ; 6UCG ; 6VQF ; 6VSW ; 6W9H ; 6W9I ; 6XAE ; 6XFV ; 7E3M ; 7JH2 ; 7JTM ; 7JTW ; 7JYM ; 7KCO ; 7KQJ ; 7KXD ; 7KXE ; 7KXF ; 7LUK ; 7NEC ; 7NP5 ; 7NP6 ; 7NPC ; 7OFI ; 7OFK ; 7QP4 ; 7W3P ; 7W3Q ; 7XQE ; 8FAV ; 8FB1 ; 8FB2 ; 8GXP
Pfam ID
PF00104 ; PF00105
Sequence
MDRAPQRQHRASRELLAAKKTHTSQIEVIPCKICGDKSSGIHYGVITCEGCKGFFRRSQR
CNAAYSCTRQQNCPIDRTSRNRCQHCRLQKCLALGMSRDAVKFGRMSKKQRDSLHAEVQK
QLQQRQQQQQEPVVKTPPAGAQGADTLTYTLGLPDGQLPLGSSPDLPEASACPPGLLKAS
GSGPSYSNNLAKAGLNGASCHLEYSPERGKAEGRESFYSTGSQLTPDRCGLRFEEHRHPG
LGELGQGPDSYGSPSFRSTPEAPYASLTEIEHLVQSVCKSYRETCQLRLEDLLRQRSNIF
SREEVTGYQRKSMWEMWERCAHHLTEAIQYVVEFAKRLSGFMELCQNDQIVLLKAGAMEV
VLVRMCRAYNADNRTVFFEGKYGGMELFRALGCSELISSIFDFSHSLSALHFSEDEIALY
TALVLINAHRPGLQEKRKVEQLQYNLELAFHHHLCKTHRQSILAKLPPKGKLRSLCSQHV
ERLQIFQHLHPIVVQAAFPPLYKELFSTETESPVGLSK
Function
Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1. Also plays a role in the regulation of hepatocyte glucose metabolism through the regulation of G6PC1 and PCK1. Regulates the rhythmic expression of PROX1 and promotes its nuclear localization. Plays an indispensable role in the induction of IFN-gamma dependent anti-mycobacterial systemic immunity ; [Isoform 2]: Essential for thymopoiesis and the development of several secondary lymphoid tissues, including lymph nodes and Peyer's patches. Required for the generation of LTi (lymphoid tissue inducer) cells. Regulates thymocyte survival through DNA-binding on ROREs of target gene promoter regions and recruitment of coactivaros via the AF-2. Also plays a key role, downstream of IL6 and TGFB and synergistically with RORA, for lineage specification of uncommitted CD4(+) T-helper (T(H)) cells into T(H)17 cells, antagonizing the T(H)1 program. Probably regulates IL17 and IL17F expression on T(H) by binding to the essential enhancer conserved non-coding sequence 2 (CNS2) in the IL17-IL17F locus. May also play a role in the pre-TCR activation cascade leading to the maturation of alpha/beta T-cells and may participate in the regulation of DNA accessibility in the TCR-J(alpha) locus.
Tissue Specificity Isoform 1 is widely expressed in many tissues, including liver and adipose, and highly expressed in skeletal muscle. Isoform 2 is primarily expressed in immature thymocytes.
KEGG Pathway
Th17 cell differentiation (hsa04659 )
Circadian rhythm (hsa04710 )
Inflammatory bowel disease (hsa05321 )
Reactome Pathway
(Name not found )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
Nuclear Receptor transcription pathway (R-HSA-383280 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal recessive mendelian susceptibility to mycobacterial diseases due to complete RORgamma receptor deficiency DIS8PN5W Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Sirolimus DMGW1ID Approved Nuclear receptor ROR-gamma (RORC) increases the Nephropathy toxic ADR of Sirolimus. [19]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Nuclear receptor ROR-gamma (RORC). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Nuclear receptor ROR-gamma (RORC). [13]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Nuclear receptor ROR-gamma (RORC). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nuclear receptor ROR-gamma (RORC). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Nuclear receptor ROR-gamma (RORC). [3]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Nuclear receptor ROR-gamma (RORC). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Nuclear receptor ROR-gamma (RORC). [6]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Nuclear receptor ROR-gamma (RORC). [7]
Simvastatin DM30SGU Approved Simvastatin decreases the expression of Nuclear receptor ROR-gamma (RORC). [8]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline decreases the expression of Nuclear receptor ROR-gamma (RORC). [9]
Rofecoxib DM3P5DA Approved Rofecoxib decreases the expression of Nuclear receptor ROR-gamma (RORC). [10]
Dinoprostone DMTYOPD Approved Dinoprostone increases the expression of Nuclear receptor ROR-gamma (RORC). [11]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Nuclear receptor ROR-gamma (RORC). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Nuclear receptor ROR-gamma (RORC). [14]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Nuclear receptor ROR-gamma (RORC). [15]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Nuclear receptor ROR-gamma (RORC). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
25-hydroxycholesterol DMCHAQ7 Investigative 25-hydroxycholesterol affects the binding of Nuclear receptor ROR-gamma (RORC). [17]
M-Phenoxybenzoic Acid For Cis-Isomer DMJRK47 Investigative M-Phenoxybenzoic Acid For Cis-Isomer affects the binding of Nuclear receptor ROR-gamma (RORC). [18]
------------------------------------------------------------------------------------

References

1 IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015 Aug 7;349(6248):606-613. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes. Toxicol Appl Pharmacol. 2012 Aug 1;262(3):217-22. doi: 10.1016/j.taap.2012.05.004. Epub 2012 May 19.
6 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
7 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
8 Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol. 2008 May 15;180(10):6988-96. doi: 10.4049/jimmunol.180.10.6988.
9 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
10 Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain. 2007 Mar;128(1-2):136-47.
11 Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009 Mar 16;206(3):535-48. doi: 10.1084/jem.20082293. Epub 2009 Mar 9.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
15 Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep. 2016 Dec 1;6:37842. doi: 10.1038/srep37842.
16 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
17 Highly potent binding and inverse agonist activity of bisphenol A derivatives for retinoid-related orphan nuclear receptor ROR. Toxicol Lett. 2012 Jul 20;212(2):205-11. doi: 10.1016/j.toxlet.2012.05.020. Epub 2012 May 29.
18 Structure-based Identification of Endocrine Disrupting Pesticides Targeting Breast Cancer Proteins. Toxicology. 2020 Jun;439:152459. doi: 10.1016/j.tox.2020.152459. Epub 2020 Apr 9.
19 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.