General Information of Drug Off-Target (DOT) (ID: OTUW3SAX)

DOT Name Post-GPI attachment to proteins factor 2 (PGAP2)
Synonyms FGF receptor-activating protein 1
Gene Name PGAP2
Related Disease
Intellectual disability, autosomal dominant 40 ( )
Advanced cancer ( )
Beckwith-Wiedemann syndrome ( )
Bone osteosarcoma ( )
Cleft lip/palate ( )
Hyperphosphatasia with intellectual disability syndrome 3 ( )
Intellectual disability ( )
Osteosarcoma ( )
Hyperphosphatasia-intellectual disability syndrome ( )
UniProt ID
PGAP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10277
Sequence
MYQVPLPLDRDGTLVRLRFTMVALVTVCCPLVAFLFCILWSLLFHFKETTATHCGVPNYL
PSVSSAIGGEVPQRYVWRFCIGLHSAPRFLVAFAYWNHYLSCTSPCSCYRPLCRLNFGLN
VVENLALLVLTYVSSSEDFTIHENAFIVFIASSLGHMLLTCILWRLTKKHTVSQEDRKSY
SWKQRLFIINFISFFSALAVYFRHNMYCEAGVYTIFAILEYTVVLTNMAFHMTAWWDFGN
KELLITSQPEEKRF
Function Involved in the lipid remodeling steps of GPI-anchor maturation. Required for stable expression of GPI-anchored proteins at the cell surface.
Tissue Specificity Ubiquitously expressed, with highest levels in testis and pancreas.

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Intellectual disability, autosomal dominant 40 DISAI0IH Definitive Autosomal recessive [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Beckwith-Wiedemann syndrome DISH15GR Strong Biomarker [2]
Bone osteosarcoma DIST1004 Strong Biomarker [2]
Cleft lip/palate DIS14IG3 Strong Genetic Variation [3]
Hyperphosphatasia with intellectual disability syndrome 3 DISN934M Strong Autosomal recessive [4]
Intellectual disability DISMBNXP Strong Genetic Variation [5]
Osteosarcoma DISLQ7E2 Strong Biomarker [2]
Hyperphosphatasia-intellectual disability syndrome DISQJ9HK Supportive Autosomal recessive [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [8]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [9]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [12]
Marinol DM70IK5 Approved Marinol increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [13]
Selenium DM25CGV Approved Selenium increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [17]
Bilirubin DMI0V4O Investigative Bilirubin decreases the expression of Post-GPI attachment to proteins factor 2 (PGAP2). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Post-GPI attachment to proteins factor 2 (PGAP2). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Post-GPI attachment to proteins factor 2 (PGAP2). [16]
------------------------------------------------------------------------------------

References

1 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
2 Human FRAG1 encodes a novel membrane-spanning protein that localizes to chromosome 11p15.5, a region of frequent loss of heterozygosity in cancer.Genomics. 1999 Nov 15;62(1):59-66. doi: 10.1006/geno.1999.5980.
3 Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival.Elife. 2019 Jun 24;8:e45248. doi: 10.7554/eLife.45248.
4 Late transcription and simultaneous replication of simian adenovirus 7 DNA as revealed by spreading lytically infected cell cultures. J Gen Virol. 1979 Mar;42(3):443-56. doi: 10.1099/0022-1317-42-3-443.
5 A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family.J Neurol Sci. 2016 Dec 15;371:121-125. doi: 10.1016/j.jns.2016.10.027. Epub 2016 Oct 18.
6 PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet. 2013 Apr 4;92(4):584-9. doi: 10.1016/j.ajhg.2013.03.011.
7 Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4050-61.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
10 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
11 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
14 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol. 2010 Mar-Apr;24(2):73-88.