General Information of Drug Off-Target (DOT) (ID: OTV3AJDJ)

DOT Name LYR motif-containing protein 1 (LYRM1)
Gene Name LYRM1
UniProt ID
LYRM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF05347
Sequence
MTTATRQEVLGLYRSIFRLARKWQATSGQMEDTIKEKQYILNEARTLFRKNKNLTDTDLI
KQCIDECTARIEIGLHYKIPYPRPIHLPPMGLTPLRGRGLRSQEKLRKLSKPVYLRSHDE
VS
Function May promote cell proliferation and inhibition of apoptosis of preadipocytes.
Tissue Specificity High levels in adipose tissue.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of LYR motif-containing protein 1 (LYRM1). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of LYR motif-containing protein 1 (LYRM1). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of LYR motif-containing protein 1 (LYRM1). [7]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of LYR motif-containing protein 1 (LYRM1). [2]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of LYR motif-containing protein 1 (LYRM1). [4]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of LYR motif-containing protein 1 (LYRM1). [5]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of LYR motif-containing protein 1 (LYRM1). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of LYR motif-containing protein 1 (LYRM1). [8]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of LYR motif-containing protein 1 (LYRM1). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
5 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
6 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
7 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
8 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
9 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.