General Information of Drug Off-Target (DOT) (ID: OTXPUL6S)

DOT Name Solute carrier family 38 member 10 (SLC38A10)
Synonyms Amino acid transporter SLC38A10
Gene Name SLC38A10
UniProt ID
S38AA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01490
Sequence
MTAAAASNWGLITNIVNSIVGVSVLTMPFCFKQCGIVLGALLLVFCSWMTHQSCMFLVKS
ASLSKRRTYAGLAFHAYGKAGKMLVETSMIGLMLGTCIAFYVVIGDLGSNFFARLFGFQV
GGTFRMFLLFAVSLCIVLPLSLQRNMMASIQSFSAMALLFYTVFMFVIVLSSLKHGLFSG
QWLRRVSYVRWEGVFRCIPIFGMSFACQSQVLPTYDSLDEPSVKTMSSIFASSLNVVTTF
YVMVGFFGYVSFTEATAGNVLMHFPSNLVTEMLRVGFMMSVAVGFPMMILPCRQALSTLL
CEQQQKDGTFAAGGYMPPLRFKALTLSVVFGTMVGGILIPNVETILGLTGATMGSLICFI
CPALIYKKIHKNALSSQVVLWVGLGVLVVSTVTTLSVSEEVPEDLAEEAPGGRLGEAEGL
MKVEAARLSAQDPVVAVAEDGREKPKLPKEREELEQAQIKGPVDVPGREDGKEAPEEAQL
DRPGQGIAVPVGEAHRHEPPVPHDKVVVDEGQDREVPEENKPPSRHAGGKAPGVQGQMAP
PLPDSEREKQEPEQGEVGKRPGQAQALEEAGDLPEDPQKVPEADGQPAVQPAKEDLGPGD
RGLHPRPQAVLSEQQNGLAVGGGEKAKGGPPPGNAAGDTGQPAEDSDHGGKPPLPAEKPA
PGPGLPPEPREQRDVERAGGNQAASQLEEAGRAEMLDHAVLLQVIKEQQVQQKRLLDQQE
KLLAVIEEQHKEIHQQRQEDEEDKPRQVEVHQEPGAAVPRGQEAPEGKARETVENLPPLP
LDPVLRAPGGRPAPSQDLNQRSLEHSEGPVGRDPAGPPDGGPDTEPRAAQAKLRDGQKDA
APRAAGTVKELPKGPEQVPVPDPAREAGGPEERLAEEFPGQSQDVTGGSQDRKKPGKEVA
ATGTSILKEANWLVAGPGAETGDPRMKPKQVSRDLGLAADLPGGAEGAAAQPQAVLRQPE
LRVISDGEQGGQQGHRLDHGGHLEMRKARGGDHVPVSHEQPRGGEDAAVQEPRQRPEPEL
GLKRAVPGGQRPDNAKPNRDLKLQAGSDLRRRRRDLGPHAEGQLAPRDGVIIGLNPLPDV
QVNDLRGALDAQLRQAAGGALQVVHSRQLRQAPGPPEES
Function
Facilitates bidirectional transport of amino acids. May act as a glutamate sensor that regulates glutamate-glutamine cycle and mTOR signaling in the brain. The transport mechanism remains to be elucidated.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Solute carrier family 38 member 10 (SLC38A10). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Solute carrier family 38 member 10 (SLC38A10). [4]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Solute carrier family 38 member 10 (SLC38A10). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Solute carrier family 38 member 10 (SLC38A10). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Solute carrier family 38 member 10 (SLC38A10). [10]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Solute carrier family 38 member 10 (SLC38A10). [2]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Solute carrier family 38 member 10 (SLC38A10). [3]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Solute carrier family 38 member 10 (SLC38A10). [5]
Menadione DMSJDTY Approved Menadione affects the expression of Solute carrier family 38 member 10 (SLC38A10). [6]
Cannabidiol DM0659E Approved Cannabidiol decreases the expression of Solute carrier family 38 member 10 (SLC38A10). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Solute carrier family 38 member 10 (SLC38A10). [11]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Solute carrier family 38 member 10 (SLC38A10). [12]
Manganese DMKT129 Investigative Manganese increases the expression of Solute carrier family 38 member 10 (SLC38A10). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
5 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
6 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
7 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
8 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
11 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
12 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
13 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.