General Information of Drug Off-Target (DOT) (ID: OT1WQ55V)

DOT Name GPI inositol-deacylase (PGAP1)
Synonyms EC 3.1.-.-; Post-GPI attachment to proteins factor 1; hPGAP1
Gene Name PGAP1
Related Disease
Congenital disorder of glycosylation ( )
Congenital factor XII deficiency ( )
Intellectual disability ( )
Intellectual disability, autosomal recessive 42 ( )
Paroxysmal nocturnal haemoglobinuria ( )
Autosomal recessive non-syndromic intellectual disability ( )
Autosomal recessive spastic paraplegia type 67 ( )
UniProt ID
PGAP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.-.-
Pfam ID
PF07819
Sequence
MFLHSVNLWNLAFYVFMVFLATLGLWDVFFGFEENKCSMSYMFEYPEYQKIELPKKLAKR
YPAYELYLYGEGSYAEEHKILPLTGIPVLFLPGNAGSYKQVRSIGSIALRKAEDIDFKYH
FDFFSVNFNEELVALYGGSLQKQTKFVHECIKTILKLYKGQEFAPKSVAIIGHSMGGLVA
RALLTLKNFKHDLINLLITQATPHVAPVMPLDRFITDFYTTVNNYWILNARHINLTTLSV
AGGFRDYQVRSGLTFLPKLSHHTSALSVVSSAVPKTWVSTDHLSIVWCKQLQLTTVRAFF
DLIDADTKQITQNSKKKLSVLYHHFIRHPSKHFEENPAIISDLTGTSMWVLVKVSKWTYV
AYNESEKIYFTFPLENHRKIYTHVYCQSTMLDTNSWIFACINSTSMCLQGVDLSWKAELL
PTIKYLTLRLQDYPSLSHLVVYVPSVRGSKFVVDCEFFKKEKRYIQLPVTHLFSFGLSSR
KVVLNTNGLYYNLELLNFGQIYQAFKINVVSKCSAVKEEITSIYRLHIPWSYEDSLTIAQ
APSSTEISLKLHIAQPENNTHVALFKMYTSSDCRYEVTVKTSFSQILGQVVRFHGGALPA
YVVSNILLAYRGQLYSLFSTGCCLEYATMLDKEAKPYKVDPFVIIIKFLLGYKWFKELWD
VLLLPELDAVILTCQSMCFPLISLILFLFGTCTAYWSGLLSSASVRLLSSLWLALKRPSE
LPKDIKMISPDLPFLTIVLIIVSWTTCGALAILLSYLYYVFKVVHLQASLTTFKNSQPVN
PKHSRRSEKKSNHHKDSSIHHLRLSANDAEDSLRMHSTVINLLTWIVLLSMPSLIYWLKN
LRYYFKLNPDPCKPLAFILIPTMAILGNTYTVSIKSSKLLKTTSQFPLPLAVGVIAFGSA
HLYRLPCFVFIPLLLHALCNFM
Function Involved in inositol deacylation of GPI-anchored proteins. GPI inositol deacylation may important for efficient transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi.
KEGG Pathway
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis (hsa00563 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Attachment of GPI anchor to uPAR (R-HSA-162791 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Congenital disorder of glycosylation DIS400QP Strong Biomarker [1]
Congenital factor XII deficiency DISN4DF6 Strong Genetic Variation [1]
Intellectual disability DISMBNXP Strong Genetic Variation [1]
Intellectual disability, autosomal recessive 42 DIS4V6PK Strong Autosomal recessive [2]
Paroxysmal nocturnal haemoglobinuria DISBHMYH Strong Altered Expression [3]
Autosomal recessive non-syndromic intellectual disability DISJWRZZ Supportive Autosomal recessive [4]
Autosomal recessive spastic paraplegia type 67 DISUPBQE Supportive Autosomal recessive [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of GPI inositol-deacylase (PGAP1). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of GPI inositol-deacylase (PGAP1). [7]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of GPI inositol-deacylase (PGAP1). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of GPI inositol-deacylase (PGAP1). [9]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of GPI inositol-deacylase (PGAP1). [10]
Quercetin DM3NC4M Approved Quercetin increases the expression of GPI inositol-deacylase (PGAP1). [11]
Selenium DM25CGV Approved Selenium decreases the expression of GPI inositol-deacylase (PGAP1). [12]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of GPI inositol-deacylase (PGAP1). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of GPI inositol-deacylase (PGAP1). [14]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of GPI inositol-deacylase (PGAP1). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of GPI inositol-deacylase (PGAP1). [16]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of GPI inositol-deacylase (PGAP1). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of GPI inositol-deacylase (PGAP1). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of GPI inositol-deacylase (PGAP1). [16]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of GPI inositol-deacylase (PGAP1). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of GPI inositol-deacylase (PGAP1). [17]
------------------------------------------------------------------------------------

References

1 Cerebral visual impairment and intellectual disability caused by PGAP1 variants.Eur J Hum Genet. 2015 Dec;23(12):1689-93. doi: 10.1038/ejhg.2015.42. Epub 2015 Mar 25.
2 oto is a homeotic locus with a role in anteroposterior development that is partially redundant with Lim1. Development. 1999 Nov;126(22):5085-95. doi: 10.1242/dev.126.22.5085.
3 The Monoclonal Anti-CD157 Antibody Clone SY11B5, Used for High Sensitivity Detection of PNH Clones on WBCs, Fails to Detect a Common Polymorphic Variant Encoded by BST-1.Cytometry B Clin Cytom. 2018 Jul;94(4):652-659. doi: 10.1002/cyto.b.21625. Epub 2018 Feb 9.
4 Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet. 2014 May 1;10(5):e1004320. doi: 10.1371/journal.pgen.1004320. eCollection 2014 May.
5 Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014 Jan 31;343(6170):506-511. doi: 10.1126/science.1247363.
6 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
7 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
8 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
20 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.