General Information of Drug Off-Target (DOT) (ID: OT2O5ZBK)

DOT Name Suppressor of cytokine signaling 6 (SOCS6)
Synonyms SOCS-6; Cytokine-inducible SH2 protein 4; CIS-4; Suppressor of cytokine signaling 4; SOCS-4
Gene Name SOCS6
Related Disease
Parkinsonian disorder ( )
Acute leukaemia ( )
Adult glioblastoma ( )
Advanced cancer ( )
Allergic rhinitis ( )
Bladder cancer ( )
Brain neoplasm ( )
Cervical cancer ( )
Cervical carcinoma ( )
Endometrial carcinoma ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
Lung squamous cell carcinoma ( )
Medium chain acyl-CoA dehydrogenase deficiency ( )
Medulloblastoma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Pancreatic cancer ( )
Primary myelofibrosis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Stomach cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Nasopharyngeal carcinoma ( )
Bone osteosarcoma ( )
Kaposi sarcoma ( )
Osteosarcoma ( )
Colorectal carcinoma ( )
Periodontitis ( )
UniProt ID
SOCS6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2VIF
Pfam ID
PF00017 ; PF07525
Sequence
MKKISLKTLRKSFNLNKSKEETDFMVVQQPSLASDFGKDDSLFGSCYGKDMASCDINGED
EKGGKNRSKSESLMGTLKRRLSAKQKSKGKAGTPSGSSADEDTFSSSSAPIVFKDVRAQR
PIRSTSLRSHHYSPAPWPLRPTNSEETCIKMEVRVKALVHSSSPSPALNGVRKDFHDLQS
ETTCQEQANSLKSSASHNGDLHLHLDEHVPVVIGLMPQDYIQYTVPLDEGMYPLEGSRSY
CLDSSSPMEVSAVPPQVGGRAFPEDESQVDQDLVVAPEIFVDQSVNGLLIGTTGVMLQSP
RAGHDDVPPLSPLLPPMQNNQIQRNFSGLTGTEAHVAESMRCHLNFDPNSAPGVARVYDS
VQSSGPMVVTSLTEELKKLAKQGWYWGPITRWEAEGKLANVPDGSFLVRDSSDDRYLLSL
SFRSHGKTLHTRIEHSNGRFSFYEQPDVEGHTSIVDLIEHSIRDSENGAFCYSRSRLPGS
ATYPVRLTNPVSRFMQVRSLQYLCRFVIRQYTRIDLIQKLPLPNKMKDYLQEKHY
Function
SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction. May be a substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Regulates KIT degradation by ubiquitination of the tyrosine-phosphorylated receptor.
KEGG Pathway
JAK-STAT sig.ling pathway (hsa04630 )
Prolactin sig.ling pathway (hsa04917 )
Reactome Pathway
Neddylation (R-HSA-8951664 )
Negative regulation of FLT3 (R-HSA-9706369 )
Regulation of KIT signaling (R-HSA-1433559 )

Molecular Interaction Atlas (MIA) of This DOT

31 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Parkinsonian disorder DISHGY45 Definitive Biomarker [1]
Acute leukaemia DISDQFDI Strong Altered Expression [2]
Adult glioblastoma DISVP4LU Strong Biomarker [3]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Allergic rhinitis DIS3U9HN Strong Biomarker [5]
Bladder cancer DISUHNM0 Strong Biomarker [6]
Brain neoplasm DISY3EKS Strong Biomarker [7]
Cervical cancer DISFSHPF Strong Altered Expression [8]
Cervical carcinoma DIST4S00 Strong Altered Expression [8]
Endometrial carcinoma DISXR5CY Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Biomarker [10]
Glioblastoma multiforme DISK8246 Strong Biomarker [3]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [11]
Lung squamous cell carcinoma DISXPIBD Strong Biomarker [12]
Medium chain acyl-CoA dehydrogenase deficiency DISB8C4K Strong Biomarker [13]
Medulloblastoma DISZD2ZL Strong Altered Expression [14]
Neoplasm DISZKGEW Strong Biomarker [4]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [15]
Pancreatic cancer DISJC981 Strong Biomarker [16]
Primary myelofibrosis DIS6L0CN Strong Biomarker [17]
Prostate cancer DISF190Y Strong Altered Expression [4]
Prostate carcinoma DISMJPLE Strong Altered Expression [4]
Stomach cancer DISKIJSX Strong Biomarker [10]
Urinary bladder cancer DISDV4T7 Strong Biomarker [6]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [6]
Nasopharyngeal carcinoma DISAOTQ0 moderate Altered Expression [18]
Bone osteosarcoma DIST1004 Disputed Biomarker [19]
Kaposi sarcoma DISC1H1Z Disputed Biomarker [20]
Osteosarcoma DISLQ7E2 Disputed Biomarker [19]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [21]
Periodontitis DISI9JOI Limited Biomarker [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Suppressor of cytokine signaling 6 (SOCS6). [23]
Arsenic DMTL2Y1 Approved Arsenic decreases the methylation of Suppressor of cytokine signaling 6 (SOCS6). [29]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Suppressor of cytokine signaling 6 (SOCS6). [35]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Suppressor of cytokine signaling 6 (SOCS6). [37]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Suppressor of cytokine signaling 6 (SOCS6). [24]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [25]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Suppressor of cytokine signaling 6 (SOCS6). [26]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Suppressor of cytokine signaling 6 (SOCS6). [27]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [28]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Suppressor of cytokine signaling 6 (SOCS6). [24]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [30]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Suppressor of cytokine signaling 6 (SOCS6). [31]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Suppressor of cytokine signaling 6 (SOCS6). [32]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Suppressor of cytokine signaling 6 (SOCS6). [31]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [33]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Suppressor of cytokine signaling 6 (SOCS6). [34]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Suppressor of cytokine signaling 6 (SOCS6). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Suppressor of cytokine signaling 6 (SOCS6). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [39]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Suppressor of cytokine signaling 6 (SOCS6). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Cis-4-[18F]fluoro-D-proline detects neurodegeneration in patients with akinetic-rigid parkinsonism.Nucl Med Commun. 2019 Apr;40(4):383-387. doi: 10.1097/MNM.0000000000000982.
2 Expression of SHP-1 and SOCS6 in patients with acute leukemia and their clinical implication.Onco Targets Ther. 2017 Mar 29;10:1915-1920. doi: 10.2147/OTT.S131537. eCollection 2017.
3 Interference with NTSR1 Expression Exerts an Anti-Invasion Effect via the Jun/miR-494/SOCS6 Axis of Glioblastoma Cells.Cell Physiol Biochem. 2018;49(6):2382-2395. doi: 10.1159/000493838. Epub 2018 Sep 27.
4 SOCS6 Functions as a Tumor Suppressor by Inducing Apoptosis and Inhibiting Angiogenesis in Human Prostate Cancer.Curr Cancer Drug Targets. 2018;18(9):894-904. doi: 10.2174/1568009618666180102101442.
5 MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway.Exp Ther Med. 2018 Apr;15(4):3523-3529. doi: 10.3892/etm.2018.5827. Epub 2018 Feb 1.
6 Long noncoding RNA neuroblastoma-associated transcript 1 gene inhibits malignant cellular phenotypes of bladder cancer through miR-21/SOCS6 axis.Cell Death Dis. 2018 Oct 11;9(10):1042. doi: 10.1038/s41419-018-1090-z.
7 Investigation of cis-4-[(18)F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment.Mol Imaging Biol. 2018 Dec;20(6):1035-1043. doi: 10.1007/s11307-018-1197-8.
8 miR-494 inhibits cervical cancer cell proliferation through upregulation of SOCS6 expression.Oncol Lett. 2018 Mar;15(3):3075-3080. doi: 10.3892/ol.2017.7651. Epub 2017 Dec 19.
9 Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR-616 in endometrial carcinoma.Life Sci. 2019 Aug 15;231:116549. doi: 10.1016/j.lfs.2019.116549. Epub 2019 Jun 12.
10 miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells.FEBS Lett. 2014 Jun 5;588(12):2055-62. doi: 10.1016/j.febslet.2014.04.036. Epub 2014 May 5.
11 MiR-183 modulates multi-drug resistance in hepatocellular cancer (HCC) cells via miR-183-IDH2/SOCS6-HIF-1 feedback loop.Eur Rev Med Pharmacol Sci. 2016 May;20(10):2020-7.
12 Array-comparative genomic hybridization reveals loss of SOCS6 is associated with poor prognosis in primary lung squamous cell carcinoma.PLoS One. 2012;7(2):e30398. doi: 10.1371/journal.pone.0030398. Epub 2012 Feb 17.
13 Oxidative stress induction by cis-4-decenoic acid: relevance for MCAD deficiency.Free Radic Res. 2007 Nov;41(11):1261-72. doi: 10.1080/10715760701687109.
14 Downregulation of microRNA-431 by human interferon- inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6.Int J Oncol. 2014 May;44(5):1685-90. doi: 10.3892/ijo.2014.2317. Epub 2014 Feb 28.
15 miR-1260b, mediated by YY1, activates KIT signaling by targeting SOCS6 to regulate cell proliferation and apoptosis in NSCLC.Cell Death Dis. 2019 Feb 8;10(2):112. doi: 10.1038/s41419-019-1390-y.
16 MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer.Pathol Oncol Res. 2013 Oct;19(4):739-48. doi: 10.1007/s12253-013-9637-x. Epub 2013 May 9.
17 miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6.Oncotarget. 2017 Mar 28;8(13):21380-21397. doi: 10.18632/oncotarget.15226.
18 MiR-142-3p Suppresses SOCS6 Expression and Promotes Cell Proliferation in Nasopharyngeal Carcinoma.Cell Physiol Biochem. 2015;36(5):1743-52. doi: 10.1159/000430147.
19 miR-19 promotes osteosarcoma progression by targeting SOCS6.Biochem Biophys Res Commun. 2018 Jan 1;495(1):1363-1369. doi: 10.1016/j.bbrc.2017.10.002. Epub 2017 Oct 3.
20 kshv-mir-k12-1-5p promotes cell growth and metastasis by targeting SOCS6 in Kaposi's sarcoma cells.Cancer Manag Res. 2019 May 29;11:4985-4995. doi: 10.2147/CMAR.S198411. eCollection 2019.
21 miR-885-5p upregulation promotes colorectal cancer cell proliferation and migration by targeting suppressor of cytokine signaling.Oncol Lett. 2018 Jul;16(1):65-72. doi: 10.3892/ol.2018.8645. Epub 2018 May 7.
22 Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-B pathway.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):2098-2106. doi: 10.1080/21691401.2019.1620256.
23 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
24 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
25 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
26 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
27 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
28 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
29 Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol. 2013 Feb;27(2):106-15. doi: 10.1002/jbt.21462. Epub 2013 Jan 11.
30 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
31 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
32 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
33 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
34 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
37 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
38 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
39 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
40 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.