General Information of Drug Off-Target (DOT) (ID: OT3U1P20)

DOT Name Phenylalanine--tRNA ligase alpha subunit (FARSA)
Synonyms EC 6.1.1.20; CML33; Phenylalanyl-tRNA synthetase alpha subunit; PheRS
Gene Name FARSA
Related Disease
Familial hypercholesterolemia ( )
Rajab interstitial lung disease with brain calcifications 2 ( )
Schizophrenia ( )
Methicillin-resistant staphylococci infection ( )
UniProt ID
SYFA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3L4G
EC Number
6.1.1.20
Pfam ID
PF18552 ; PF18554 ; PF18553 ; PF01409
Sequence
MADGQVAELLLRRLEASDGGLDSAELAAELGMEHQAVVGAVKSLQALGEVIEAELRSTKH
WELTAEGEEIAREGSHEARVFRSIPPEGLAQSELMRLPSGKVGFSKAMSNKWIRVDKSAA
DGPRVFRVVDSMEDEVQRRLQLVRGGQAEKLGEKERSELRKRKLLAEVTLKTYWVSKGSA
FSTSISKQETELSPEMISSGSWRDRPFKPYNFLAHGVLPDSGHLHPLLKVRSQFRQIFLE
MGFTEMPTDNFIESSFWNFDALFQPQQHPARDQHDTFFLRDPAEALQLPMDYVQRVKRTH
SQGGYGSQGYKYNWKLDEARKNLLRTHTTSASARALYRLAQKKPFTPVKYFSIDRVFRNE
TLDATHLAEFHQIEGVVADHGLTLGHLMGVLREFFTKLGITQLRFKPAYNPYTEPSMEVF
SYHQGLKKWVEVGNSGVFRPEMLLPMGLPENVSVIAWGLSLERPTMIKYGINNIRELVGH
KVNLQMVYDSPLCRLDAEPRPPPTQEAA
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Cytosolic tRNA aminoacylation (R-HSA-379716 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Familial hypercholesterolemia DISC06IX Strong Genetic Variation [1]
Rajab interstitial lung disease with brain calcifications 2 DISO5GEH Strong Autosomal recessive [2]
Schizophrenia DISSRV2N Strong Altered Expression [3]
Methicillin-resistant staphylococci infection DIS6DRDZ moderate Biomarker [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [5]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [11]
Selenium DM25CGV Approved Selenium increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [12]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [13]
Clozapine DMFC71L Approved Clozapine increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [19]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Phenylalanine--tRNA ligase alpha subunit (FARSA). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Phenylalanine--tRNA ligase alpha subunit (FARSA). [16]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Phenylalanine--tRNA ligase alpha subunit (FARSA). [17]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Phenylalanine--tRNA ligase alpha subunit (FARSA). [18]
------------------------------------------------------------------------------------

References

1 Low-density lipoprotein receptor mutations generate synthetic genome-wide associations.Eur J Hum Genet. 2013 May;21(5):563-6. doi: 10.1038/ejhg.2012.207. Epub 2012 Sep 12.
2 FARSA mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects. Clin Genet. 2019 Nov;96(5):468-472. doi: 10.1111/cge.13614. Epub 2019 Aug 6.
3 Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.Eur Arch Psychiatry Clin Neurosci. 2009 Apr;259(3):151-63. doi: 10.1007/s00406-008-0847-2. Epub 2009 Jan 22.
4 Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: A homology model approach.J Mol Graph Model. 2017 May;73:36-47. doi: 10.1016/j.jmgm.2017.02.002. Epub 2017 Feb 10.
5 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
10 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
14 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
21 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.