General Information of Drug Off-Target (DOT) (ID: OT4EHIP4)

DOT Name Ryanodine receptor 3 (RYR3)
Synonyms RYR-3; RyR3; Brain ryanodine receptor-calcium release channel; Brain-type ryanodine receptor; Type 3 ryanodine receptor
Gene Name RYR3
Related Disease
Alzheimer disease ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiac failure ( )
Cardiovascular disease ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Glioma ( )
High blood pressure ( )
HIV infectious disease ( )
Myocardial infarction ( )
Myopathy ( )
Obsessive compulsive disorder ( )
Osteoarthritis ( )
Type-1/2 diabetes ( )
Hirschsprung disease ( )
Neuromuscular disease ( )
Non-hodgkin lymphoma ( )
Stroke ( )
Congenital myopathy ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Infantile spasm ( )
UniProt ID
RYR3_HUMAN
PDB ID
4ERV; 6UHA; 6UHB; 6UHE; 6UHH
Pfam ID
PF08709 ; PF00520 ; PF02815 ; PF08454 ; PF06459 ; PF01365 ; PF21119 ; PF02026 ; PF00622
Sequence
MAEGGEGGEDEIQFLRTEDEVVLQCIATIHKEQRKFCLAAEGLGNRLCFLEPTSEAKYIP
PDLCVCNFVLEQSLSVRALQEMLANTGENGGEGAAQGGGHRTLLYGHAVLLRHSFSGMYL
TCLTTSRSQTDKLAFDVGLREHATGEACWWTIHPASKQRSEGEKVRIGDDLILVSVSSER
YLHLSVSNGNIQVDASFMQTLWNVHPTCSGSSIEEGYLLGGHVVRLFHGHDECLTIPSTD
QNDSQHRRIFYEAGGAGTRARSLWRVEPLRISWSGSNIRWGQAFRLRHLTTGHYLALTED
QGLILQDRAKSDTKSTAFSFRASKELKEKLDSSHKRDIEGMGVPEIKYGDSVCFVQHIAS
GLWVTYKAQDAKTSRLGPLKRKVILHQEGHMDDGLTLQRCQREESQAARIIRNTTALFSQ
FVSGNNRTAAPITLPIEEVLQTLQDLIAYFQPPEEEMRHEDKQNKLRSLKNRQNLFKEEG
MLALVLNCIDRLNVYNSVAHFAGIAREESGMAWKEILNLLYKLLAALIRGNRNNCAQFSN
NLDWLISKLDRLESSSGILEVLHCILTESPEALNLIAEGHIKSIISLLDKHGRNHKVLDI
LCSLCLCNGVAVRANQNLICDNLLPRRNLLLQTRLINDVTSIRPNIFLGVAEGSAQYKKW
YFELIIDQVDPFLTAEPTHLRVGWASSSGYAPYPGGGEGWGGNGVGDDLYSYGFDGLHLW
SGRIPRAVASINQHLLRSDDVVSCCLDLGVPSISFRINGQPVQGMFENFNTDGLFFPVMS
FSAGVKVRFLMGGRHGEFKFLPPSGYAPCYEALLPKEKMRLEPVKEYKRDADGIRDLLGT
TQFLSQASFIPCPVDTSQVILPPHLEKIRDRLAENIHELWGMNKIELGWTFGKIRDDNKR
QHPCLVEFSKLPETEKNYNLQMSTETLKTLLALGCHIAHVNPAAEEDLKKVKLPKNYMMS
NGYKPAPLDLSDVKLLPPQEILVDKLAENAHNVWAKDRIKQGWTYGIQQDLKNKRNPRLV
PYALLDERTKKSNRDSLREAVRTFVGYGYNIEPSDQELADSAVEKVSIDKIRFFRVERSY
AVRSGKWYFEFEVVTGGDMRVGWARPGCRPDVELGADDQAFVFEGNRGQRWHQGSGYFGR
TWQPGDVVGCMINLDDASMIFTLNGELLITNKGSELAFADYEIENGFVPICCLGLSQIGR
MNLGTDASTFKFYTMCGLQEGFEPFAVNMNRDVAMWFSKRLPTFVNVPKDHPHIEVMRID
GTMDSPPCLKVTHKTFGTQNSNADMIYCRLSMPVECHSSFSHSPCLDSEAFQKRKQMQEI
LSHTTTQCYYAIRIFAGQDPSCVWVGWVTPDYHLYSEKFDLNKNCTVTVTLGDERGRVHE
SVKRSNCYMVWGGDIVASSQRSNRSNVDLEIGCLVDLAMGMLSFSANGKELGTCYQVEPN
TKVFPAVFLQPTSTSLFQFELGKLKNAMPLSAAIFRSEEKNPVPQCPPRLDVQTIQPVLW
SRMPNSFLKVETERVSERHGWVVQCLEPLQMMALHIPEENRCVDILELCEQEDLMRFHYH
TLRLYSAVCALGNSRVAYALCSHVDLSQLFYAIDNKYLPGLLRSGFYDLLISIHLASAKE
RKLMMKNEYIIPITSTTRNIRLFPDESKRHGLPGVGLRTCLKPGFRFSTPCFVVTGEDHQ
KQSPEIPLESLRTKALSMLTEAVQCSGAHIRDPVGGSVEFQFVPVLKLIGTLLVMGVFDD
DDVRQILLLIDPSVFGEHSAGTEEGAEKEEVTQVEEKAVEAGEKAGKEAPVKGLLQTRLP
ESVKLQMCELLSYLCDCELQHRVEAIVAFGDIYVSKLQANQKFRYNELMQALNMSAALTA
RKTKEFRSPPQEQINMLLNFQLGENCPCPEEIREELYDFHEDLLLHCGVPLEEEEEEEED
TSWTGKLCALVYKIKGPPKPEKEQPTEEEERCPTTLKELISQTMICWAQEDQIQDSELVR
MMFNLLRRQYDSIGELLQALRKTYTISHTSVSDTINLLAALGQIRSLLSVRMGKEEELLM
INGLGDIMNNKVFYQHPNLMRVLGMHETVMEVMVNVLGTEKSQIAFPKMVASCCRFLCYF
CRISRQNQKAMFEHLSYLLENSSVGLASPSMRGSTPLDVAASSVMDNNELALSLEEPDLE
KVVTYLAGCGLQSCPMLLAKGYPDVGWNPIEGERYLSFLRFAVFVNSESVEENASVVVKL
LIRRPECFGPALRGEGGNGLLAAMQGAIKISENPALDLPSQGYKREVSTGDDEEEEEIVH
MGNAIMSFYSALIDLLGRCAPEMHLIQTGKGEAIRIRSILRSLVPTEDLVGIISIPLKLP
SLNKDGSVSEPDMAANFCPDHKAPMVLFLDRVYGIKDQTFLLHLLEVGFLPDLRASASLD
TVSLSTTEAALALNRYICSAVLPLLTRCAPLFAGTEHCTSLIDSTLQTIYRLSKGRSLTK
AQRDTIEECLLAICNHLRPSMLQQLLRRLVFDVPQLNEYCKMPLKLLTNHYEQCWKYYCL
PSGWGSYGLAVEEELHLTEKLFWGIFDSLSHKKYDPDLFRMALPCLSAIAGALPPDYLDT
RITATLEKQISVDADGNFDPKPINTMNFSLPEKLEYIVTKYAEHSHDKWACDKSQSGWKY
GISLDENVKTHPLIRPFKTLTEKEKEIYRWPARESLKTMLAVGWTVERTKEGEALVQQRE
NEKLRSVSQANQGNSYSPAPLDLSNVVLSRELQGMVEVVAENYHNIWAKKKKLELESKGG
GSHPLLVPYDTLTAKEKFKDREKAQDLFKFLQVNGIIVSRGMKDMELDASSMEKRFAYKF
LKKILKYVDSAQEFIAHLEAIVSSGKTEKSPRDQEIKFFAKVLLPLVDQYFTSHCLYFLS
SPLKPLSSSGYASHKEKEMVAGLFCKLAALVRHRISLFGSDSTTMVSCLHILAQTLDTRT
VMKSGSELVKAGLRAFFENAAEDLEKTSENLKLGKFTHSRTQIKGVSQNINYTTVALLPI
LTSIFEHVTQHQFGMDLLLGDVQISCYHILCSLYSLGTGKNIYVERQRPALGECLASLAA
AIPVAFLEPTLNRYNPLSVFNTKTPRERSILGMPDTVEDMCPDIPQLEGLMKEINDLAES
GARYTEMPHVIEVILPMLCNYLSYWWERGPENLPPSTGPCCTKVTSEHLSLILGNILKII
NNNLGIDEASWMKRIAVYAQPIISKARPDLLRSHFIPTLEKLKKKAVKTVQEEEQLKADG
KGDTQEAELLILDEFAVLCRDLYAFYPMLIRYVDNNRSNWLKSPDADSDQLFRMVAEVFI
LWCKSHNFKREEQNFVIQNEINNLAFLTGDSKSKMSKAMQVKSGGQDQERKKTKRRGDLY
SIQTSLIVAALKKMLPIGLNMCTPGDQELISLAKSRYSHRDTDEEVREHLRNNLHLQEKS
DDPAVKWQLNLYKDVLKSEEPFNPEKTVERVQRISAAVFHLEQVEQPLRSKKAVWHKLLS
KQRKRAVVACFRMAPLYNLPRHRSINLFLHGYQRFWIETEEYSFEEKLVQDLAKSPKVEE
EEEEETEKQPDPLHQIILYFSRNALTERSKLEDDPLYTSYSSMMAKSCQSGEDEEEDEDK
EKTFEEKEMEKQKTLYQQARLHERGAAEMVLQMISASKGEMSPMVVETLKLGIAILNGGN
AGVQQKMLDYLKEKKDAGFFQSLSGLMQSCSVLDLNAFERQNKAEGLGMVTEEGTLIVRE
RGEKVLQNDEFTRDLFRFLQLLCEGHNSDFQNFLRTQMGNTTTVNVIISTVDYLLRLQES
ISDFYWYYSGKDIIDESGQHNFSKALAVTKQIFNSLTEYIQGPCIGNQQSLAHSRLWDAV
VGFLHVFANMQMKLSQDSSQIELLKELLDLLQDMVVMLLSLLEGNVVNGTIGKQMVDTLV
ESSTNVEMILKFFDMFLKLKDLTSSDTFKEYDPDGKGIISKKEFQKAMEGQKQYTQSEID
FLLSCAEADENDMFNYVDFVDRFHEPAKDIGFNVAVLLTNLSEHMPNDSRLKCLLDPAES
VLNYFEPYLGRIEIMGGAKKIERVYFEISESSRTQWEKPQVKESKRQFIFDVVNEGGEQE
KMELFVNFCEDTIFEMQLASQISESDSADRPEEEEEDEDSSYVLEIAGEEEEDGSLEPAS
AFAMACASVKRNVTDFLKRATLKNLRKQYRNVKKMTAKELVKVLFSFFWMLFVGLFQLLF
TILGGIFQILWSTVFGGGLVEGAKNIRVTKILGDMPDPTQFGIHDDTMEAERAEVMEPGI
TTELVHFIKGEKGDTDIMSDLFGLHPKKEGSLKHGPEVGLGDLSEIIGKDEPPTLESTVQ
KKRKAQAAEMKAANEAEGKVESEKADMEDGEKEDKDKEEEQAEYLWTEVTKKKKRRCGQK
VEKPEAFTANFFKGLEIYQTKLLHYLARNFYNLRFLALFVAFAINFILLFYKVTEEPLEE
ETEDVANLWNSFNDEEEEEAMVFFVLQESTGYMAPTLRALAIIHTIISLVCVVGYYCLKV
PLVVFKREKEIARKLEFDGLYITEQPSEDDIKGQWDRLVINTPSFPNNYWDKFVKRKVIN
KYGDLYGAERIAELLGLDKNALDFSPVEETKAEAASLVSWLSSIDMKYHIWKLGVVFTDN
SFLYLAWYTTMSVLGHYNNFFFAAHLLDIAMGFKTLRTILSSVTHNGKQLVLTVGLLAVV
VYLYTVVAFNFFRKFYNKSEDDDEPDMKCDDMMTCYLFHMYVGVRAGGGIGDEIEDPAGD
PYEMYRIVFDITFFFFVIVILLAIIQGLIIDAFGELRDQQEQVREDMETKCFICGIGNDY
FDTTPHGFETHTLQEHNLANYLFFLMYLINKDETEHTGQESYVWKMYQERCWDFFPAGDC
FRKQYEDQLG
Function
Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Contributes to cellular calcium ion homeostasis. Plays a role in cellular calcium signaling.
Tissue Specificity
Brain, skeletal muscle, placenta and possibly liver and kidney. In brain, highest levels are found in the cerebellum, hippocampus, caudate nucleus and amygdala, with lower levels in the corpus callosum, substantia nigra and thalamus.
KEGG Pathway
Calcium sig.ling pathway (hsa04020 )
Apelin sig.ling pathway (hsa04371 )
Circadian entrainment (hsa04713 )
Oxytocin sig.ling pathway (hsa04921 )
Salivary secretion (hsa04970 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Reactome Pathway
Ion homeostasis (R-HSA-5578775 )
Stimuli-sensing channels (R-HSA-2672351 )

Molecular Interaction Atlas (MIA) of This DOT

27 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alzheimer disease DISF8S70 Strong Genetic Variation [1]
Breast cancer DIS7DPX1 Strong Genetic Variation [2]
Breast carcinoma DIS2UE88 Strong Genetic Variation [2]
Cardiac failure DISDC067 Strong Biomarker [3]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [3]
Colon cancer DISVC52G Strong Genetic Variation [4]
Colon carcinoma DISJYKUO Strong Genetic Variation [4]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [4]
Congestive heart failure DIS32MEA Strong Biomarker [3]
Coronary atherosclerosis DISKNDYU Strong Genetic Variation [3]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [3]
Glioma DIS5RPEH Strong Genetic Variation [5]
High blood pressure DISY2OHH Strong Genetic Variation [1]
HIV infectious disease DISO97HC Strong Genetic Variation [6]
Myocardial infarction DIS655KI Strong Genetic Variation [3]
Myopathy DISOWG27 Strong Genetic Variation [7]
Obsessive compulsive disorder DIS1ZMM2 Strong Genetic Variation [8]
Osteoarthritis DIS05URM Strong Genetic Variation [9]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [1]
Hirschsprung disease DISUUSM1 moderate Altered Expression [10]
Neuromuscular disease DISQTIJZ moderate Biomarker [11]
Non-hodgkin lymphoma DISS2Y8A moderate Genetic Variation [12]
Stroke DISX6UHX moderate Genetic Variation [13]
Congenital myopathy DISLSK9G Disputed Autosomal recessive [14]
Arteriosclerosis DISK5QGC Limited Genetic Variation [15]
Atherosclerosis DISMN9J3 Limited Genetic Variation [15]
Infantile spasm DISZSKDG Limited Autosomal dominant [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Ryanodine receptor 3 (RYR3). [16]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ryanodine receptor 3 (RYR3). [17]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ryanodine receptor 3 (RYR3). [18]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Ryanodine receptor 3 (RYR3). [20]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Ryanodine receptor 3 (RYR3). [17]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ryanodine receptor 3 (RYR3). [21]
Marinol DM70IK5 Approved Marinol increases the expression of Ryanodine receptor 3 (RYR3). [22]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Ryanodine receptor 3 (RYR3). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ryanodine receptor 3 (RYR3). [23]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Ryanodine receptor 3 (RYR3). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Ryanodine receptor 3 (RYR3). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Ryanodine receptor 3 (RYR3). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ryanodine receptor 3 (RYR3). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ryanodine receptor 3 (RYR3). [19]
------------------------------------------------------------------------------------

References

1 Polymorphisms Within RYR3 Gene Are Associated With Risk and Age at Onset of Hypertension, Diabetes, and Alzheimer's Disease.Am J Hypertens. 2018 Jun 11;31(7):818-826. doi: 10.1093/ajh/hpy046.
2 Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification.Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13653-8. doi: 10.1073/pnas.1103360108. Epub 2011 Aug 2.
3 RYR3 gene polymorphisms and cardiovascular disease outcomes in the context of antihypertensive treatment.Pharmacogenomics J. 2013 Aug;13(4):330-4. doi: 10.1038/tpj.2012.22. Epub 2012 Jun 5.
4 Functional polymorphism in the MicroRNA-367 binding site as a prognostic factor for colonic cancer.Anticancer Res. 2013 Feb;33(2):513-9.
5 GOLGA7 rs11337, a Polymorphism at the MicroRNA Binding Site, Is Associated with Glioma Prognosis.Mol Ther Nucleic Acids. 2019 Dec 6;18:56-65. doi: 10.1016/j.omtn.2019.08.006. Epub 2019 Aug 14.
6 Deep sequencing of RYR3 gene identifies rare and common variants associated with increased carotid intima-media thickness (cIMT) in HIV-infected individuals.J Hum Genet. 2015 Feb;60(2):63-7. doi: 10.1038/jhg.2014.104. Epub 2014 Dec 11.
7 Ryanodine receptor type 3 (RYR3) as a novel gene associated with a myopathy with nemaline bodies.Eur J Neurol. 2018 Jun;25(6):841-847. doi: 10.1111/ene.13607. Epub 2018 Mar 26.
8 Genomewide linkage analysis in Costa Rican families implicates chromosome 15q14 as a candidate region for OCD.Hum Genet. 2011 Dec;130(6):795-805. doi: 10.1007/s00439-011-1033-6. Epub 2011 Jun 21.
9 A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium.J Med Genet. 2009 Sep;46(9):614-6. doi: 10.1136/jmg.2009.067314. Epub 2009 Jun 8.
10 Altered ryanodine receptor gene expression in Hirschsprung's disease.Pediatr Surg Int. 2019 Sep;35(9):923-927. doi: 10.1007/s00383-019-04504-2. Epub 2019 Jul 1.
11 The genomic and clinical landscape of fetal akinesia.Genet Med. 2020 Mar;22(3):511-523. doi: 10.1038/s41436-019-0680-1. Epub 2019 Nov 4.
12 A polymorphism at the microRNA binding site in the 3' untranslated region of C14orf101 is associated with non-Hodgkin lymphoma overall survival.Cancer Genet. 2014 Apr;207(4):141-6. doi: 10.1016/j.cancergen.2014.03.007. Epub 2014 Mar 22.
13 Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population.BMC Cardiovasc Disord. 2014 Jan 14;14:6. doi: 10.1186/1471-2261-14-6.
14 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
15 RYR3 gene variants in subclinical atherosclerosis among HIV-infected women in the Women's Interagency HIV Study (WIHS).Atherosclerosis. 2014 Apr;233(2):666-672. doi: 10.1016/j.atherosclerosis.2014.01.035. Epub 2014 Jan 30.
16 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
17 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
18 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
19 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
20 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
21 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
22 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
23 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
24 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.