General Information of Drug Off-Target (DOT) (ID: OT4MKCC8)

DOT Name Protein Smaug homolog 1 (SAMD4A)
Synonyms Smaug 1; hSmaug1; Sterile alpha motif domain-containing protein 4A; SAM domain-containing protein 4A
Gene Name SAMD4A
Related Disease
Advanced cancer ( )
Alzheimer disease ( )
Alzheimer disease 3 ( )
Drug dependence ( )
Metabolic bone disease ( )
Myopathy ( )
Neoplasm ( )
Osteoporosis ( )
Schizophrenia ( )
Substance abuse ( )
Substance dependence ( )
Atherosclerosis ( )
UniProt ID
SMAG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8OIK
Pfam ID
PF00536
Sequence
MMFRDQVGVLAGWFKGWNECEQTVALLSLLKRVSQTQARFLQLCLEHSLADCAELHVLER
EANSPGIINQWQQESKDKVISLLLTHLPLLKPGNLDAKVEYMKLLPKILAHSIEHNQHIE
ESRQLLSYALIHPATSLEDRSALAMWLNHLEDRTSTSFGGQNRGRSDSVDYGQTHYYHQR
QNSDDKLNGWQNSRDSGICINASNWQDKSMGCENGHVPLYSSSSVPTTINTIGTSTSTIL
SGQAHHSPLKRSVSLTPPMNVPNQPLGHGWMSHEDLRARGPQCLPSDHAPLSPQSSVASS
GSGGSEHLEDQTTARNTFQEEGSGMKDVPAWLKSLRLHKYAALFSQMTYEEMMALTECQL
EAQNVTKGARHKIVISIQKLKERQNLLKSLERDIIEGGSLRIPLQELHQMILTPIKAYSS
PSTTPEARRREPQAPRQPSLMGPESQSPDCKDGAAATGATATPSAGASGGLQPHQLSSCD
GELAVAPLPEGDLPGQFTRVMGKVCTQLLVSRPDEENISSYLQLIDKCLIHEAFTETQKK
RLLSWKQQVQKLFRSFPRKTLLDISGYRQQRNRGFGQSNSLPTAGSVGGGMGRRNPRQYQ
IPSRNVPSARLGLLGTSGFVSSNQRNTTATPTIMKQGRQNLWFANPGGSNSMPSRTHSSV
QRTRSLPVHTSPQNMLMFQQPEFQLPVTEPDINNRLESLCLSMTEHALGDGVDRTSTI
Function Acts as a translational repressor of SRE-containing messengers.

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Alzheimer disease 3 DISVT69G Strong Biomarker [2]
Drug dependence DIS9IXRC Strong Biomarker [3]
Metabolic bone disease DISO7RI8 Strong Biomarker [4]
Myopathy DISOWG27 Strong Altered Expression [5]
Neoplasm DISZKGEW Strong Altered Expression [6]
Osteoporosis DISF2JE0 Strong Biomarker [4]
Schizophrenia DISSRV2N Strong Genetic Variation [7]
Substance abuse DIS327VW Strong Biomarker [3]
Substance dependence DISDRAAR Strong Biomarker [3]
Atherosclerosis DISMN9J3 Limited Genetic Variation [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Protein Smaug homolog 1 (SAMD4A). [9]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein Smaug homolog 1 (SAMD4A). [10]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein Smaug homolog 1 (SAMD4A). [11]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Protein Smaug homolog 1 (SAMD4A). [12]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein Smaug homolog 1 (SAMD4A). [13]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein Smaug homolog 1 (SAMD4A). [14]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein Smaug homolog 1 (SAMD4A). [15]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Protein Smaug homolog 1 (SAMD4A). [16]
Quercetin DM3NC4M Approved Quercetin increases the expression of Protein Smaug homolog 1 (SAMD4A). [17]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Protein Smaug homolog 1 (SAMD4A). [18]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Protein Smaug homolog 1 (SAMD4A). [19]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Protein Smaug homolog 1 (SAMD4A). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Protein Smaug homolog 1 (SAMD4A). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Protein Smaug homolog 1 (SAMD4A). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Protein Smaug homolog 1 (SAMD4A). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protein Smaug homolog 1 (SAMD4A). [27]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Protein Smaug homolog 1 (SAMD4A). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Protein Smaug homolog 1 (SAMD4A). [29]
Resorcinol DMM37C0 Investigative Resorcinol decreases the expression of Protein Smaug homolog 1 (SAMD4A). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Protein Smaug homolog 1 (SAMD4A). [21]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Protein Smaug homolog 1 (SAMD4A). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Protein Smaug homolog 1 (SAMD4A). [26]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Protein Smaug homolog 1 (SAMD4A). [25]
------------------------------------------------------------------------------------

References

1 Circular RNA CpG island hypermethylation-associated silencing in human cancer.Oncotarget. 2018 Jun 26;9(49):29208-29219. doi: 10.18632/oncotarget.25673. eCollection 2018 Jun 26.
2 Functional segregation of executive control network and frontoparietal network in Alzheimer's disease.Cortex. 2019 Nov;120:36-48. doi: 10.1016/j.cortex.2019.04.026. Epub 2019 May 18.
3 Genome wide association for addiction: replicated results and comparisons of two analytic approaches.PLoS One. 2010 Jan 21;5(1):e8832. doi: 10.1371/journal.pone.0008832.
4 RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression.Cell Discov. 2017 Jan 24;3:16050. doi: 10.1038/celldisc.2016.50. eCollection 2017.
5 Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy.PLoS Genet. 2013 Apr;9(4):e1003445. doi: 10.1371/journal.pgen.1003445. Epub 2013 Apr 18.
6 Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity.Biochem Biophys Res Commun. 2017 Apr 8;485(3):606-613. doi: 10.1016/j.bbrc.2017.01.136. Epub 2017 Feb 24.
7 Genome-wide association study of paliperidone efficacy.Pharmacogenet Genomics. 2017 Jan;27(1):7-18. doi: 10.1097/FPC.0000000000000250.
8 Identification of the BCAR1-CFDP1-TMEM170A locus as a determinant of carotid intima-media thickness and coronary artery disease risk.Circ Cardiovasc Genet. 2012 Dec;5(6):656-65. doi: 10.1161/CIRCGENETICS.112.963660. Epub 2012 Nov 14.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
11 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
12 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
13 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
14 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
15 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
16 Inorganic arsenic exposure promotes malignant progression by HDAC6-mediated down-regulation of HTRA1. J Appl Toxicol. 2023 Aug;43(8):1214-1224. doi: 10.1002/jat.4457. Epub 2023 Mar 11.
17 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
18 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
19 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
20 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
25 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
26 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
27 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
28 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
29 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
30 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.