General Information of Drug Off-Target (DOT) (ID: OT74IAG2)

DOT Name Protein furry homolog (FRY)
Gene Name FRY
Related Disease
Adenocarcinoma ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiac failure ( )
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Congestive heart failure ( )
Intellectual disability ( )
Lung adenocarcinoma ( )
Narcolepsy ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Ovarian neoplasm ( )
Ovarian serous adenocarcinoma ( )
Pancreatic cancer ( )
Parkinson disease ( )
Prostate carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung squamous cell carcinoma ( )
UniProt ID
FRY_HUMAN
Pfam ID
PF19421 ; PF14225 ; PF14228 ; PF14222
Sequence
MASQQDSGFFEISIKYLLKSWSNTSPVGNGYIKPPVPPASGTHREKGPPTMLPINVDPDS
KPGEYVLKSLFVNFTTQAERKIRIIMAEPLEKPLTKSLQRGEDPQFDQVISSMSSLSEYC
LPSILRTLFDWYKRQNGIEDESHEYRPRTSNKSKSDEQQRDYLMERRDLAIDFIFSLVLI
EVLKQIPLHPVIDSLIHDVINLAFKHFKYKEGYLGPNTGNMHIVADLYAEVIGVLAQAKF
PAVKKKFMAELKELRHKEQNPYVVQSIISLIMGMKFFRIKMYPVEDFEASLQFMQECAHY
FLEVKDKDIKHALAGLFVEILVPVAAAVKNEVNVPCLRNFVESLYDTTLELSSRKKHSLA
LYPLVTCLLCVSQKQLFLNRWHIFLNNCLSNLKNKDPKMARVALESLYRLLWVYMIRIKC
ESNTATQSRLITIITTLFPKGSRGVVPRDMPLNIFVKIIQFIAQERLDFAMKEIIFDFLC
VGKPAKAFSLNPERMNIGLRAFLVIADSLQQKDGEPPMPVTGAVLPSGNTLRVKKTYLSK
TLTEEEAKMIGMSLYYSQVRKAVDNILRHLDKEVGRCMMLTNVQMLNKEPEDMITGERKP
KIDLFRTCVAAIPRLLPDGMSKLELIDLLARLSIHMDDELRHIAQNSLQGLLVDFSDWRE
DVLFGFTNFLLREVNDMHHTLLDSSLKLLLQLLTQWKLVIQTQGKVYEQANKIRNSELIA
NGSSHRIQSERGPHCSVLHAVEGFALVLLCSFQVATRKLSVLILKEIRALFIALGQPEDD
DRPMIDVMDQLSSSILESFIHVAVSDSATLPLTHNVDLQWLVEWNAVLVNSHYDVKSPSH
VWIFAQSVKDPWVLCLFSFLRQENLPKHCPTALSYAWPYAFTRLQSVMPLVDPNSPINAK
KTSTAGSGDNYVTLWRNYLILCFGVAKPSIMSPGHLRASTPEIMATTPDGTVSYDNKAIG
TPSVGVLLKQLVPLMRLESIEITESLVLGFGRTNSLVFRELVEELHPLMKEALERRPENK
KRRERRDLLRLQLLRIFELLADAGVISDSTNGALERDTLALGALFLEYVDLTRMLLEAEN
DKEVEILKDIRAHFSAMVANLIQCVPVHHRRFLFPQQSLRHHLFILFSQWAGPFSIMFTP
LDRYSDRNHQITRYQYCALKAMSAVLCCGPVFDNVGLSPDGYLYKWLDNILACQDLRVHQ
LGCEVVVLLLELNPDQINLFNWAIDRCYTGSYQLASGCFKAIATVCGSRNYPFDIVTLLN
LVLFKASDTNREIYEISMQLMQILEAKLFVYSKKVAEQRPGSILYGTHGPLPPLYSVSLA
LLSCELARMYPELTLPLFSEVSQRFPTTHPNGRQIMLTYLLPWLHNIELVDSRLLLPGSS
PSSPEDEVKDREGDVTASHGLRGNGWGSPEATSLVLNNLMYMTAKYGDEVPGPEMENAWN
ALANNEKWSNNLRITLQFLISLCGVSSDTVLLPYIKKVAIYLCRNNTIQTMEELLFELQQ
TEPVNPIVQHCDNPPFYRFTASSKASAAASGTTSSSNTVVAGQENFPDAEENKILKESDE
RFSNVIRAHTRLESRYSNSSGGSYDEDKNDPISPYTGWLLTITETKQPQPLPMPCTGGCW
APLVDYLPETITPRGPLHRCNIAVIFMTEMVVDHSVREDWALHLPLLLHAVFLGLDHYRP
EVFEHSKKLLLHLLIALSCNSNFHSIASVLLQTREMGEAKTLTVQPAYQPEYLYTGGFDF
LREDQSSPVPDSGLSSSSTSSSISLGGSSGNLPQMTQEVEDVDTAAETDEKANKLIEFLT
TRAFGPLWCHEDITPKNQNSKSAEQLTNFLRHVVSVFKDSKSGFHLEHQLSEVALQTALA
SSSRHYAGRSFQIFRALKQPLSAHALSDLLSRLVEVIGEHGDEIQGYVMEALLTLEAAVD
NLSDCLKNSDLLTVLSRSSSPDLSSSSKLTASRKSTGQLNMNPGTTSGNTATAERSRHQR
SFSVPKKFGVIDRSSDPPRSATLDRIQACTQQGLSSKTRSSSSLKDSLTDPSHINHPTNL
LATIFWVTVALMESDFEFEYLMALRLLSRLLAHMPLDKAENREKLEKLQAQLKWADFSGL
QQLLLKGFTSLTTTDLTLQLFSLLTPVSKISMVDASHAIGFPLNVLCLLPQLIQHFENPN
QFCKDIAERIAQVCLEEKNPKLSNLAHVMTLYKTHSYTRDCATWVNVVCRYLHEAYADIT
LNMVTYLAELLEKGLPSVQQPLLQVIYSLLSYMDLSVVPVKQFNVEVLKTIEKYVQSVHW
REALNILKLVVSRSASLVLPSYQHSDLSKIEIHRVWTSASKELPGKTLDFHFDISETPII
GRRYDELQNSSGRDGKPRAMAVTRSTSSTSSGSNSNVLVPVSWKRPQYSQKRTKEKLVHV
LSLCGQEVGLSKNPSVIFSSCGDLDLLEHQTSLVSSEDGAREQENMDDTNSEQQFRVFRD
FDFLDVELEDGEGESMDNFNWGVRRRSLDSLDKCDMQILEERQLSGSTPSLNKMHHEDSD
ESSEEEDLTASQILEHSDLIMTLSPSEETNPMELLTTACDSTPAEPHSFNTRMSSFDASL
PDMNNLQISEGSKAEAVREEEDTTVHEDDLSSSINELPAAFECSDSFSLDMTEGEEKGNR
ALDQFTLASFGEGDRGVSPPPSPFFSAILAAFQPAACDDAEEAWRSHINQLMCDSDGSCA
VYTFHVFSSLFKNIQKRFCFLTCDAASYLGDNLRGIGSKFVSSSQMLTSCSECPTLFVDA
ETLLSCGLLDKLKFSVLELQEYLDTYNNRKEATLSWLANCKATFAGGSRDGVITCQPGDS
EEKQLELCQRLYKLHFQLLLLFQSYCKLIGQVHEVSSMPELLNMSRELSDLKKHLKEASA
VIAADPLYSDGAWSEPTFTSTEAAIQSMLECLKNNELGKALRQIRECRSLWPNDIFGSSS
DDEVQTLLNIYFRHQTLGQTGTYALVGSNQSLTEICTKLMELNMEIRDMIRRAQSYRVLT
TFLPDSSVSGTSL
Function
Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation.

Molecular Interaction Atlas (MIA) of This DOT

27 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Breast cancer DIS7DPX1 Strong Altered Expression [3]
Breast carcinoma DIS2UE88 Strong Altered Expression [3]
Cardiac failure DISDC067 Strong Altered Expression [4]
Colon cancer DISVC52G Strong Genetic Variation [5]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [5]
Colorectal cancer DISNH7P9 Strong Genetic Variation [5]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [5]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [5]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [5]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [5]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [5]
Congestive heart failure DIS32MEA Strong Altered Expression [4]
Intellectual disability DISMBNXP Strong Biomarker [6]
Lung adenocarcinoma DISD51WR Strong Genetic Variation [5]
Narcolepsy DISLCNLI Strong Genetic Variation [7]
Neoplasm DISZKGEW Strong Altered Expression [2]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [8]
Ovarian neoplasm DISEAFTY Strong Genetic Variation [5]
Ovarian serous adenocarcinoma DISSU72Z Strong Genetic Variation [5]
Pancreatic cancer DISJC981 Strong Biomarker [1]
Parkinson disease DISQVHKL Strong Genetic Variation [9]
Prostate carcinoma DISMJPLE Strong Genetic Variation [5]
Lung cancer DISCM4YA Limited Genetic Variation [10]
Lung carcinoma DISTR26C Limited Genetic Variation [11]
Lung squamous cell carcinoma DISXPIBD Limited Genetic Variation [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein furry homolog (FRY). [12]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein furry homolog (FRY). [13]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein furry homolog (FRY). [14]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protein furry homolog (FRY). [15]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein furry homolog (FRY). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Protein furry homolog (FRY). [17]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Protein furry homolog (FRY). [18]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Protein furry homolog (FRY). [19]
Progesterone DMUY35B Approved Progesterone decreases the expression of Protein furry homolog (FRY). [20]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Protein furry homolog (FRY). [21]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Protein furry homolog (FRY). [22]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Protein furry homolog (FRY). [23]
Melphalan DMOLNHF Approved Melphalan decreases the expression of Protein furry homolog (FRY). [24]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Protein furry homolog (FRY). [25]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Protein furry homolog (FRY). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Protein furry homolog (FRY). [26]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Protein furry homolog (FRY). [27]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Protein furry homolog (FRY). [28]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Protein furry homolog (FRY). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Protein furry homolog (FRY). [21]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Protein furry homolog (FRY). [31]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Protein furry homolog (FRY). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Protein furry homolog (FRY). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Protein furry homolog (FRY). [30]
------------------------------------------------------------------------------------

References

1 Identification of Pancreatic Cancer in Biliary Obstruction Patients by FRY Site-specific Methylation.Asian Pac J Cancer Prev. 2016;17(9):4487-4490.
2 Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30) on rat chromosome 12: identification of fry as a candidate Mcs gene.PLoS One. 2013 Sep 2;8(9):e70930. doi: 10.1371/journal.pone.0070930. eCollection 2013.
3 Fry Is Required for Mammary Gland Development During Pregnant Periods and Affects the Morphology and Growth of Breast Cancer Cells.Front Oncol. 2019 Nov 21;9:1279. doi: 10.3389/fonc.2019.01279. eCollection 2019.
4 Circulating miR-148b-3p and miR-409-3p as biomarkers for heart failure in patients with mitral regurgitation.Int J Cardiol. 2016 Nov 1;222:148-154. doi: 10.1016/j.ijcard.2016.07.179. Epub 2016 Jul 29.
5 Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations.Cancer Res. 2016 Sep 1;76(17):5103-14. doi: 10.1158/0008-5472.CAN-15-2980. Epub 2016 Apr 20.
6 Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011 Sep 21;478(7367):57-63. doi: 10.1038/nature10423.
7 Genome-wide association database developed in the Japanese Integrated Database Project.J Hum Genet. 2009 Sep;54(9):543-6. doi: 10.1038/jhg.2009.68. Epub 2009 Jul 24.
8 Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes.BMC Genet. 2017 Dec 8;18(1):105. doi: 10.1186/s12863-017-0572-9.
9 Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database.PLoS Genet. 2012;8(3):e1002548. doi: 10.1371/journal.pgen.1002548. Epub 2012 Mar 15.
10 Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer.Nat Genet. 2014 Jul;46(7):736-41. doi: 10.1038/ng.3002. Epub 2014 Jun 1.
11 Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.Nat Genet. 2017 Jul;49(7):1126-1132. doi: 10.1038/ng.3892. Epub 2017 Jun 12.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
14 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
15 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
19 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
20 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
23 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
24 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
25 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
26 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
27 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
28 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
29 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
30 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
31 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
32 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.