General Information of Drug Off-Target (DOT) (ID: OT9QUXJ3)

DOT Name Ephexin-1 (NGEF)
Synonyms Eph-interacting exchange protein; Neuronal guanine nucleotide exchange factor
Gene Name NGEF
Related Disease
Depression ( )
Schizophrenia ( )
Subarachnoid hemorrhage ( )
UniProt ID
NGEF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00169 ; PF00621 ; PF00018
Sequence
METRESEDLEKTRRKSASDQWNTDNEPAKVKPELLPEKEETSQADQDIQDKEPHCHIPIK
RNSIFNRSIRRKSKAKARDNPERNASCLADSQDNGKSVNEPLTLNIPWSRMPPCRTAMQT
DPGAQEMSESSSTPGNGATPEEWPALADSPTTLTEALRMIHPIPADSWRNLIEQIGLLYQ
EYRDKSTLQEIETRRQQDAEIEDNTNGSPASEDTPEEEEEEEEEEEPASPPERKTLPQIC
LLSNPHSRFNLWQDLPEIRSSGVLEILQPEEIKLQEAMFELVTSEASYYKSLNLLVSHFM
ENERIRKILHPSEAHILFSNVLDVLAVSERFLLELEHRMEENIVISDVCDIVYRYAADHF
SVYITYVSNQTYQERTYKQLLQEKAAFRELIAQLELDPKCRGLPFSSFLILPFQRITRLK
LLVQNILKRVEERSERECTALDAHKELEMVVKACNEGVRKMSRTEQMISIQKKMEFKIKS
VPIISHSRWLLKQGELQQMSGPKTSRTLRTKKLFHEIYLFLFNDLLVICRQIPGDKYQVF
DSAPRGLLRVEELEDQGQTLANVFILRLLENADDREATYMLKASSQSEMKRWMTSLAPNR
RTKFVSFTSRLLDCPQVQCVHPYVAQQPDELTLELADILNILDKTDDGWIFGERLHDQER
GWFPSSMTEEILNPKIRSQNLKECFRVHKMDDPQRSQNKDRRKLGSRNRQ
Function
Acts as a guanine nucleotide exchange factor (GEF) which differentially activates the GTPases RHOA, RAC1 and CDC42. Plays a role in axon guidance regulating ephrin-induced growth cone collapse and dendritic spine morphogenesis. Upon activation by ephrin through EPHA4, the GEF activity switches toward RHOA resulting in its activation. Activated RHOA promotes cone retraction at the expense of RAC1- and CDC42-stimulated growth cone extension.
Tissue Specificity Highly expressed in brain specifically in caudate nucleus and to a lower extent in amygdala and hippocampus. Also detected in lung.
KEGG Pathway
Axon guidance (hsa04360 )
Reactome Pathway
EPHA-mediated growth cone collapse (R-HSA-3928663 )
G alpha (12/13) signalling events (R-HSA-416482 )
RHOA GTPase cycle (R-HSA-8980692 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
NRAGE signals death through JNK (R-HSA-193648 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Depression DIS3XJ69 Strong Biomarker [1]
Schizophrenia DISSRV2N Strong Genetic Variation [2]
Subarachnoid hemorrhage DISI7I8Y Limited Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Daunorubicin DMQUSBT Approved Ephexin-1 (NGEF) affects the response to substance of Daunorubicin. [18]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Ephexin-1 (NGEF). [4]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ephexin-1 (NGEF). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Ephexin-1 (NGEF). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Ephexin-1 (NGEF). [16]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ephexin-1 (NGEF). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ephexin-1 (NGEF). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ephexin-1 (NGEF). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ephexin-1 (NGEF). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ephexin-1 (NGEF). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Ephexin-1 (NGEF). [11]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Ephexin-1 (NGEF). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Ephexin-1 (NGEF). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ephexin-1 (NGEF). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Ephexin-1 (NGEF). [12]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Ephexin-1 (NGEF). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype.Sci Rep. 2017 Aug 2;7(1):7133. doi: 10.1038/s41598-017-07325-2.
2 Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.Mol Autism. 2017 May 22;8:21. doi: 10.1186/s13229-017-0137-9. eCollection 2017.
3 Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat.Exp Neurol. 2017 Oct;296:41-48. doi: 10.1016/j.expneurol.2017.07.003. Epub 2017 Jul 8.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
17 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
18 Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res. 2007 Jun 1;67(11):5425-33. doi: 10.1158/0008-5472.CAN-06-4431.