General Information of Drug Off-Target (DOT) (ID: OTAH14LU)

DOT Name HLA class I histocompatibility antigen, A alpha chain (HLA-A)
Synonyms Human leukocyte antigen A; HLA-A
Gene Name HLA-A
UniProt ID
HLAA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1AKJ ; 1AO7 ; 1AQD ; 1B0G ; 1B0R ; 1BD2 ; 1DUY ; 1DUZ ; 1EEY ; 1EEZ ; 1HHG ; 1HHH ; 1HHI ; 1HHJ ; 1HHK ; 1HLA ; 1HSB ; 1I1F ; 1I1Y ; 1I4F ; 1I7R ; 1I7T ; 1I7U ; 1IM3 ; 1JF1 ; 1JHT ; 1LP9 ; 1OGA ; 1P7Q ; 1Q94 ; 1QEW ; 1QR1 ; 1QRN ; 1QSE ; 1QSF ; 1QVO ; 1S8D ; 1S9W ; 1S9X ; 1S9Y ; 1T1W ; 1T1X ; 1T1Y ; 1T1Z ; 1T20 ; 1T21 ; 1T22 ; 1TMC ; 1TVB ; 1TVH ; 1W72 ; 1X7Q ; 2AV1 ; 2AV7 ; 2BCK ; 2BNQ ; 2BNR ; 2C7U ; 2CLR ; 2F53 ; 2F54 ; 2GIT ; 2GJ6 ; 2GT9 ; 2GTW ; 2GTZ ; 2GUO ; 2HLA ; 2HN7 ; 2J8U ; 2JCC ; 2P5E ; 2P5W ; 2PYE ; 2UWE ; 2V2W ; 2V2X ; 2VLJ ; 2VLK ; 2VLL ; 2VLR ; 2X4N ; 2X4O ; 2X4P ; 2X4Q ; 2X4R ; 2X4S ; 2X4T ; 2X4U ; 2X70 ; 2XPG ; 3BGM ; 3BH8 ; 3BH9 ; 3BHB ; 3BO8 ; 3D25 ; 3D39 ; 3D3V ; 3FQN ; 3FQR ; 3FQT ; 3FQU ; 3FQW ; 3FQX ; 3FT2 ; 3FT3 ; 3FT4 ; 3GIV ; 3GJF ; 3GSN ; 3GSO ; 3GSQ ; 3GSR ; 3GSU ; 3GSV ; 3GSW ; 3GSX ; 3H7B ; 3H9H ; 3H9S ; 3HAE ; 3HLA ; 3HPJ ; 3I6G ; 3I6K ; 3I6L ; 3IXA ; 3KLA ; 3MGO ; 3MGT ; 3MR9 ; 3MRB ; 3MRC ; 3MRD ; 3MRE ; 3MRF ; 3MRG ; 3MRH ; 3MRI ; 3MRJ ; 3MRK ; 3MRL ; 3MRM ; 3MRN ; 3MRO ; 3MRP ; 3MRQ ; 3MRR ; 3MYJ ; 3NFN ; 3O3A ; 3O3B ; 3O3D ; 3O3E ; 3O4L ; 3PWJ ; 3PWL ; 3PWN ; 3PWP ; 3QDG ; 3QDJ ; 3QDM ; 3QEQ ; 3QFD ; 3QFJ ; 3QZW ; 3REW ; 3RL1 ; 3RL2 ; 3TO2 ; 3UTQ ; 3UTS ; 3UTT ; 3V5D ; 3V5H ; 3V5K ; 3VXM ; 3VXN ; 3VXO ; 3VXP ; 3VXR ; 3VXS ; 3VXU ; 3W0W ; 3WL9 ; 3WLB ; 4E5X ; 4EMZ ; 4EN2 ; 4EUP ; 4F7M ; 4F7P ; 4F7T ; 4FTV ; 4GKN ; 4GKS ; 4HWZ ; 4HX1 ; 4I48 ; 4I4W ; 4JFD ; 4JFE ; 4JFF ; 4JFO ; 4JFP ; 4JFQ ; 4K7F ; 4L29 ; 4L3C ; 4L3E ; 4MJ5 ; 4MJ6 ; 4MNQ ; 4N8V ; 4NNX ; 4NNY ; 4NO0 ; 4NO2 ; 4NO3 ; 4NO5 ; 4NQV ; 4NQX ; 4OV5 ; 4QOK ; 4U6X ; 4U6Y ; 4UQ2 ; 4UQ3 ; 4WJ5 ; 4WU5 ; 4WU7 ; 4WUU ; 5BRZ ; 5BS0 ; 5C07 ; 5C08 ; 5C09 ; 5C0A ; 5C0B ; 5C0C ; 5C0D ; 5C0E ; 5C0F ; 5C0G ; 5C0I ; 5C0J ; 5D2L ; 5D2N ; 5D9S ; 5DDH ; 5E00 ; 5E6I ; 5E9D ; 5ENW ; 5EOT ; 5EU3 ; 5EU4 ; 5EU5 ; 5EU6 ; 5EUO ; 5F7D ; 5F9J ; 5FA3 ; 5FA4 ; 5FDW ; 5GRD ; 5GRG ; 5GSD ; 5HGA ; 5HGB ; 5HGD ; 5HGH ; 5HHM ; 5HHN ; 5HHO ; 5HHP ; 5HHQ ; 5HYJ ; 5IRO ; 5ISZ ; 5JHD ; 5JZI ; 5MEN ; 5MEO ; 5MEP ; 5MEQ ; 5MER ; 5N1Y ; 5N6B ; 5NHT ; 5NME ; 5NMF ; 5NMG ; 5NMH ; 5NMK ; 5NQK ; 5SWQ ; 5TEZ ; 5W1W ; 5WJL ; 5WJN ; 5WKF ; 5WKH ; 5WSH ; 5WWI ; 5WWJ ; 5WWU ; 5WXC ; 5WXD ; 5XOV ; 5YXN ; 5YXU ; 6AM5 ; 6AMT ; 6AMU ; 6APN ; 6AT9 ; 6D78 ; 6D7G ; 6DKP ; 6EI2 ; 6ENY ; 6EQA ; 6EQB ; 6EWA ; 6EWC ; 6EWO ; 6G3J ; 6G3K ; 6ID4 ; 6J1W ; 6J29 ; 6J2A ; 6JOZ ; 6JP3 ; 6MPP ; 6NCA ; 6O9B ; 6O9C ; 6OPD ; 6PBH ; 6PTB ; 6PTE ; 6Q3K ; 6Q3S ; 6R2L ; 6RP9 ; 6RPA ; 6RPB ; 6RSY ; 6SS7 ; 6SS8 ; 6SS9 ; 6SSA ; 7L1B ; 7L1C ; 7L1D ; 7MLE ; 7PHR ; 7QPD ; 7RK7 ; 7RM4 ; 7RRG ; 7STF ; 7UC5 ; 7UX3 ; 8D4C ; 8D4D ; 8D4E ; 8D4F ; 8D4G ; 8D9R ; 8D9S ; 8D9T ; 8D9U ; 8D9V ; 8D9W ; 8DVG
Pfam ID
PF07654 ; PF00129 ; PF06623
Sequence
MAVMAPRTLLLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRF
DSDAASQRMEPRAPWIEQEGPEYWDQETRNVKAQSQTDRVDLGTLRGYYNQSEAGSHTIQ
IMYGCDVGSDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAAHEAEQL
RAYLDGTCVEWLRRYLENGKETLQRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLT
WQRDGEDQTQDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEL
SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQAASSDSAQGSDVSL
TACKV
Function
Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells. May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity. Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells. Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme. Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 ; Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus. A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent. Fails to present highly immunogenic peptides from the EBV latent antigens ; Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors; Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus. May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein ; Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections. Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) ; Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response; Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus. Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response ; Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus; Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus; Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response; Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor; Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.
Tissue Specificity Ubiquitous.
KEGG Pathway
Endocytosis (hsa04144 )
Phagosome (hsa04145 )
Cellular senescence (hsa04218 )
Cell adhesion molecules (hsa04514 )
Antigen processing and presentation (hsa04612 )
.tural killer cell mediated cytotoxicity (hsa04650 )
Type I diabetes mellitus (hsa04940 )
Human cytomegalovirus infection (hsa05163 )
Human papillomavirus infection (hsa05165 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Herpes simplex virus 1 infection (hsa05168 )
Epstein-Barr virus infection (hsa05169 )
Human immunodeficiency virus 1 infection (hsa05170 )
Viral carcinogenesis (hsa05203 )
Autoimmune thyroid disease (hsa05320 )
Allograft rejection (hsa05330 )
Graft-versus-host disease (hsa05332 )
Viral myocarditis (hsa05416 )
Reactome Pathway
Endosomal/Vacuolar pathway (R-HSA-1236977 )
Nef mediated downregulation of MHC class I complex cell surface expression (R-HSA-164940 )
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (R-HSA-198933 )
Interferon gamma signaling (R-HSA-877300 )
E3 ubiquitin ligases ubiquitinate target proteins (R-HSA-8866654 )
Interferon alpha/beta signaling (R-HSA-909733 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Antigen Presentation (R-HSA-983170 )
ER-Phagosome pathway (R-HSA-1236974 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 12 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Toxic epidermal necrolysis ADR of Acetaminophen. [23]
Cisplatin DMRHGI9 Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Cisplatin. [24]
Carbamazepine DMZOLBI Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Carbamazepine. [25]
Methotrexate DM2TEOL Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Methotrexate. [24]
Fenofibrate DMFKXDY Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Fenofibrate. [26]
Phenytoin DMNOKBV Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Toxic epidermal necrolysis ADR of Phenytoin. [27]
Penicillamine DM40EF6 Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Penicillamine. [28]
Clavulanate DM2FGRT Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Liver injury ADR of Clavulanate. [29]
Allopurinol DMLPAOB Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Toxic epidermal necrolysis ADR of Allopurinol. [30]
Terbinafine DMI6HUW Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) affects the response to substance of Terbinafine. [26]
Amoxicillin DMUYNEI Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Liver injury ADR of Amoxicillin. [29]
Ticlopidine DMO946V Approved HLA class I histocompatibility antigen, A alpha chain (HLA-A) increases the Liver injury ADR of Ticlopidine. [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [3]
Estradiol DMUNTE3 Approved Estradiol increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [6]
Marinol DM70IK5 Approved Marinol increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [7]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [8]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [9]
Etoposide DMNH3PG Approved Etoposide affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Malathion DMXZ84M Approved Malathion decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [11]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Ifosfamide DMCT3I8 Approved Ifosfamide affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [12]
Erythromycin DM4K7GQ Approved Erythromycin affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Bupropion DM5PCS7 Approved Bupropion affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Topiramate DM82Z30 Approved Topiramate affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Diflunisal DM7EN8I Approved Diflunisal affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Ketorolac DMI4EL5 Approved Ketorolac affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Brinzolamide DMBAPFG Approved Brinzolamide affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
Cefoxitin DMY8NC4 Approved Cefoxitin affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [18]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [19]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [20]
QUERCITRIN DM1DH96 Investigative QUERCITRIN affects the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [21]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of HLA class I histocompatibility antigen, A alpha chain (HLA-A). [16]
------------------------------------------------------------------------------------

References

1 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol. 2009 Feb;46(4):649-56.
7 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
10 Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol. 2015 May 18;28(5):927-34. doi: 10.1021/tx5005248. Epub 2015 Apr 3.
11 Malathion induced cancer-linked gene expression in human lymphocytes. Environ Res. 2020 Mar;182:109131. doi: 10.1016/j.envres.2020.109131. Epub 2020 Jan 10.
12 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
18 Identification of formaldehyde-responsive genes by suppression subtractive hybridization. Toxicology. 2008 Jan 14;243(1-2):224-35.
19 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
20 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
21 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
22 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
23 A study of HLA class I and class II 4-digit allele level in Stevens-Johnson syndrome and toxic epidermal necrolysis. Int J Immunogenet. 2011 Aug;38(4):303-9. doi: 10.1111/j.1744-313X.2011.01011.x. Epub 2011 May 4.
24 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
25 HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011 Mar 24;364(12):1134-43. doi: 10.1056/NEJMoa1013297.
26 Association of Liver Injury From Specific Drugs, or Groups of?Drugs, With Polymorphisms in HLA and Other Genes in a?Genome-Wide Association Study. Gastroenterology. 2017 Apr;152(5):1078-1089. doi: 10.1053/j.gastro.2016.12.016. Epub 2016 Dec 30.
27 Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics. 2010 Mar;11(3):349-56. doi: 10.2217/pgs.09.162.
28 Genetic markers in rheumatoid arthritis relationship to toxicity from D-penicillamine. J Rheumatol. 1986 Apr;13(2):269-73.
29 HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One. 2013 Jul 9;8(7):e68111. doi: 10.1371/journal.pone.0068111. Print 2013.
30 Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics. 2011 May;21(5):303-7. doi: 10.1097/FPC.0b013e32834282b8.
31 Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008 Feb;8(1):29-33. doi: 10.1038/sj.tpj.6500442. Epub 2007 Mar 6.