General Information of Drug Off-Target (DOT) (ID: OTAMWBVM)

DOT Name Cationic amino acid transporter 2 (SLC7A2)
Synonyms CAT-2; CAT2; Low affinity cationic amino acid transporter 2; Solute carrier family 7 member 2
Gene Name SLC7A2
UniProt ID
CTR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13520 ; PF13906
Sequence
MIPCRAALTFARCLIRRKIVTLDSLEDTKLCRCLSTMDLIALGVGSTLGAGVYVLAGEVA
KADSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLI
LSYVIGTSSVARAWSGTFDELLSKQIGQFLRTYFRMNYTGLAEYPDFFAVCLILLLAGLL
SFGVKESAWVNKVFTAVNILVLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPSENG
TSIYGAGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVCF
MAYFGVSAALTLMMPYYLLDEKSPLPVAFEYVGWGPAKYVVAAGSLCALSTSLLGSIFPM
PRVIYAMAEDGLLFKCLAQINSKTKTPIIATLSSGAVAALMAFLFDLKALVDMMSIGTLM
AYSLVAACVLILRYQPGLSYDQPKCSPEKDGLGSSPRVTSKSESQVTMLQRQGFSMRTLF
CPSLLPTQQSASLVSFLVGFLAFLVLGLSVLTTYGVHAITRLEAWSLALLALFLVLFVAI
VLTIWRQPQNQQKVAFMVPFLPFLPAFSILVNIYLMVQLSADTWVRFSIWMAIGFLIYFS
YGIRHSLEGHLRDENNEEDAYPDNVHAAAEEKSAIQANDHHPRNLSSPFIFHEKTSEF
Function
Functions as a permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine); the affinity for its substrates differs between isoforms created by alternative splicing. May play a role in classical or alternative activation of macrophages via its role in arginine transport; [Isoform 1]: Functions as a permease that mediates the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). Shows a much higher affinity for L-arginine and L-homoarginine than isoform 2; [Isoform 2]: Functions as a low-affinity, high capacity permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine).
Tissue Specificity Expressed at high levels in the skeletal muscle, placenta and ovary. Expressed at intermediate levels in the liver and pancreas and at low levels in the kidney and heart.
Reactome Pathway
Amino acid transport across the plasma membrane (R-HSA-352230 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
3-iodothyronamine DM3L0F8 Investigative Cationic amino acid transporter 2 (SLC7A2) affects the uptake of 3-iodothyronamine. [18]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Cationic amino acid transporter 2 (SLC7A2). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cationic amino acid transporter 2 (SLC7A2). [11]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cationic amino acid transporter 2 (SLC7A2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Cationic amino acid transporter 2 (SLC7A2). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [7]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [7]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [8]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [9]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [10]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Cationic amino acid transporter 2 (SLC7A2). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Cationic amino acid transporter 2 (SLC7A2). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Cationic amino acid transporter 2 (SLC7A2). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Cationic amino acid transporter 2 (SLC7A2). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cationic amino acid transporter 2 (SLC7A2). [16]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Cationic amino acid transporter 2 (SLC7A2). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
10 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
18 Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology. 2009 Apr;150(4):1991-9.